Citation: Bi-Yun SU, Ting-Yu YAN, Xiao-Teng LI, Dan-Dan PAN, Paison FAIDA, Li-Qin DING. Influence of the Substituents on Imino-aryl Ring of Mono(imino)pyrrole-Ni Complexes to Their Ethylene Polymerization Catalytic Performance[J]. Chinese Journal of Structural Chemistry, ;2020, 39(6): 1093-1102. doi: 10.14102/j.cnki.0254-5861.2011-2548 shu

Influence of the Substituents on Imino-aryl Ring of Mono(imino)pyrrole-Ni Complexes to Their Ethylene Polymerization Catalytic Performance

  • Corresponding author: Bi-Yun SU, subiyun@xsyu.edu.cn
  • Received Date: 25 June 2019
    Accepted Date: 14 November 2019

    Fund Project: the National Natural Science Foundation of China 51674200the Science and Technology Research Program of Shaanxi Province 2019JM-421the Science and Technology Research Program of Shaanxi Province 2018JM2035

Figures(4)

  • In order to study the influence of substituents on imino-aryl rings of mono(imino)pyrrole-transition metal complexes to their ethylene polymerization performance, a series of mono(imine)pyrroles (L1-L3) were synthesized by microwave irradiation from 2-acetylpyrrole and a series of 2, 6-position disubstituted anilines (substituent: H, Me, Et). A simplified synthetic method was introduced to prepare the corresponding nickel complexes NiL2 (1~3) with direct condensation of mono(imine)pyrrole ligands and nickel dichloride. All the compounds were fully characterized by 1H NMR, IR, EA, MS, and X-ray crystal diffraction. Ligand L3 (C16H20N2, Mr = 240.34) belongs to the triclinic system, space group P\begin{document}$ \overline 1 $\end{document}, with a = 7.9606(19), b = 9.028(2), c = 11.205(3) Å, the final R = 0.0606 and wR = 0.1875. Complex 3 (C32H38N4Ni, Mr = 537.37) belongs to the monoclinic system, space group C2/c with a = 19.811(3), b = 11.262(2), c = 26.004(4) Å, the final R = 0.0388 and wR = 0.1020. The crystal structures indicated that all the Ni complexes have similar tetra-coordinated geometries, in which the ligand chelated to the center nickel with a 2:1 molar ratio. Catalytic properties of the Ni complexes for ethylene polymerization were systematically investigated, and the results showed a regular increase of catalytic activities with steric hindrance of the substituents on the imino-aryl ring of Ni complexes.
  • 加载中
    1. [1]

      Small, B. L.; Brookhart, M. Iron-based catalysts with exceptionally high activities and selectivities for oligomerization of ethylene to linear α-olefins. J. Am. Chem. Soc. 1998, 120, 7143–7144.  doi: 10.1021/ja981317q

    2. [2]

      Small, B. L.; Brookhart, M. US Patent, E. I. du Pont de Nemours and Company. 6150482. 2000-11-21.

    3. [3]

      Britovsek, G. J. P.; Gibson, V. C.; Kimberley, B. S.; Maddox, P. J.; Mctavish, S. J.; Solan, G. A.; White, A. J. P.; Williams, D. J. Novel 7olefin polymerization catalysts based on iron and cobalt. Chem. Commun. 1998, 7, 849–850.

    4. [4]

      Britovsek, G. J. P.; Mastroianni, S.; Solan, G. A.; Baugh, S. P. D.; Redshaw, C.; Gibson, V. C.; White, A. J. P.; Williams, D. J. Oligomerisation of ethylene by bis(imino)pyridyliron and cobalt complexes. Chem. Eur. J. 2000, 6, 2221–2231.  doi: 10.1002/1521-3765(20000616)6:12<2221::AID-CHEM2221>3.0.CO;2-U

    5. [5]

      Bruin de B.; Bill, E.; Bothe, E. Molecular and electronic structures of bis(pyridine-2, 6-diimine)metal complexes [ML2](PF6)n (n = 0, 1, 2, 3; M = Mn, Fe, Co, Ni, Cu, Zn). Inorg. Chem. 2000, 39, 2936–2947.  doi: 10.1021/ic000113j

    6. [6]

      Zhang, Z. C.; Chen, S. T.; Zhang, X. F.; Li, H. Y.; Ke, Y. C.; Lu, Y. Y.; Hu, Y. L. A series of novel 2, 6-bis(imino)pyridyl iron catalysts: synthesis, characterization and ethylene oligomerization. J. Mol. Catal. A: Chem. 2005, 230, 1–8.  doi: 10.1016/j.molcata.2004.11.028

    7. [7]

      Gudasi, K. B.; Patil, S. A.; Vadavi, R. S.; Shenoy, R. V.; Patil, M. S. Synthesis and spectral characterization of some transition metal complexes containing pentadentate SNNNS donor heterocyclic Schiff base ligands. Trans. Met. Chem. 2005, 30, 1014–1019.  doi: 10.1007/s11243-005-6297-z

    8. [8]

      Gudasi, K. B.; Patil, S. A.; Vadavi, R. S.; Shenoy, R. V.; Nethaji, M.; Bligh, S. W. A. Synthesis and spectral investigation of manganese(Ⅱ), cadmium(Ⅱ) and oxovanadium(IV) complexes with 2, 6-diacetylpyridine bis(2-aminobenzoylhydrazone): crystal structure of manganese(Ⅱ) and cadmium(Ⅱ) complexes. Inorganica Chimica Acta 2006, 359, 3229–3236.  doi: 10.1016/j.ica.2006.03.009

    9. [9]

      Ionkin, A. S.; Marshall, W. J.; Adelman, D. J.; Barbara, B. F.; Fish, B. M.; Schiffhauer, M. F. High-temperature catalysts for the production of α-olefins based on iron(Ⅱ) and iron(Ⅲ) tridentate bis(imino)pyridine complexes with double pattern of substitution:   ortho-methyl plus meta-aryl. Organometallics 2006, 25, 2978–2992.  doi: 10.1021/om051069o

    10. [10]

      Britovsek, G. J. P.; Gibson, V. C.; Hoarau, O. D.; Spitzmesser, S. K.; White, A. J. P.; Williams, D. J. Iron and cobalt ethylene polymerization catalysts:   variations on the central donor. Inorg. Chem. 2003, 42, 3454–3465.  doi: 10.1021/ic034040q

    11. [11]

      Beaufort, L.; Benvenuti, F.; Noels, A. F. Iron(Ⅱ)-ethylene polymerization catalysts bearing 2, 6-bis(imino)pyrazine ligands: part I. Synthesis and characterization. J. Mol. Catal. A: Chem. 2006, 260, 210–214.  doi: 10.1016/j.molcata.2006.07.005

    12. [12]

      Dawson, D. M.; Walker, D. A.; Thornton-Pett, M.; Bochmann, M. Synthesis and reactivity of sterically hindered iminopyrrolato complexes of zirconium, iron, cobalt and nickel. J. Chem. Soc., Dalton Trans. 2000, 4, 459–466.

    13. [13]

      Gibson, V. C.; Spitzmesser, S. K.; White, A. J. P.; Williams, D. J. Synthesis and reactivity of 1, 8-bis(imino)carbazolide complexes of iron, cobalt and manganese. Dalton Trans. 2003, 13, 2718–2727.

    14. [14]

      Nomura, K.; Sidokmai, W.; Imanishi, Y. Ethylene polymerization catalyzed by ruthenium and iron complexes containing 2, 6-bis(2-oxazolin-2-yl)pyridine (pybox) ligand-cocatalyst system. Bull Chem. Soc. Jpn. 2000, 73, 599–605.  doi: 10.1246/bcsj.73.599

    15. [15]

      Sun, W. H.; Tang, X. B.; Gao, T. L.; Wu, B.; Zhang, W. J.; Ma, H. W. Synthesis, characterization, and ethylene oligomerization and polymerization of ferrous and cobaltous 2-(ethylcarboxylato)-6-iminopyridyl complexes. Organometallics 2004, 23, 5037–5047.  doi: 10.1021/om0496636

    16. [16]

      Tang, X. B.; Sun, W. H.; Gao, T. L.; Hou, J. X.; Chen, J. T.; Chen, W. Nickel(Ⅱ) complexes bearing 2-ethylcarboxylate-6-iminopyridyl ligands: synthesis, structures and their catalytic behavior for ethylene oligomerization and polymerization. J. Organomet. Chem. 2005, 690, 1570–1580.  doi: 10.1016/j.jorganchem.2004.12.027

    17. [17]

      Su, B. Y.; Zhao, J. S.; Gao, Q. C. Crystal structure and ethylene oligomerization catalytic activity of {2-carbethoxy-6-[1-[(2, 6-diethyl-phenyl)imino]ethyl]pyridine}CoCl2. Chin. J. Chem. 2007, 25, 121–124.  doi: 10.1002/cjoc.200790005

    18. [18]

      Su, B. Y.; Zhao, J. S. Structure and ethylene polymerization/oligomerization behavior of 2-carbethoxy-6-iminopyridine-based transition metal complexes. Polyhedron 2006, 25, 3289–3298.  doi: 10.1016/j.poly.2006.06.015

    19. [19]

      Su, B. Y.; Feng, G. X. Influence of metal centers of 2, 6-bis(imino)pyridyl transition metal complexes on ethylene polymerization/oligomerization catalytic activities. Poly. Inter. 2010, 59, 1058–1062.

    20. [20]

      Su, B. Y.; Zhao, J. S.; Zhang, Q. Z.; Qing, W. L. Cobalt(Ⅱ) and nickel(Ⅱ) complexes bearing mono(imino)pyridyl and bis(imino)pyridyl ligands: preparation, structure and ethylene polymerization/oligomerization behaviors. Poly. Inter. 2009, 58, 1051–1057.  doi: 10.1002/pi.2631

    21. [21]

      Anderson, C. E.; Batsanov, A. S.; Dyer, P. W.; Fawcett, J.; Howard, J. A. K. Chelating N-pyrrolylphosphino-N΄-arylaldimine ligands: synthesis, ligand behaviour and applications in catalysis. Dalton Trans. 2006, 45, 5362–5378.

    22. [22]

      Carabineiro, S. A.; Silva, L. C.; Gomes, P. T.; Pereira, L. C. J.; Veiros, L. F.; Pascu, S. I.; Duarte, M. T.; Namorado, S.; Henriques, R. T. Synthesis and characterization of tetrahedral and square planar bis(iminopyrrolyl) complexes of cobalt(Ⅱ). Inorg. Chem. 2007, 46, 6880–6890.  doi: 10.1021/ic062125w

    23. [23]

      Imhof, W. Bis{2-[(phenyl­imino)­methyl]-1H-pyrrol-1-ido}palladium(Ⅱ). Acta Cryst. 2012, E68, m1567.

    24. [24]

      Imhof, W. Bis{2-[(2, 4, 6-trimethyl­phen­yl)imino­methyl]pyrrol-1-idopalladium(Ⅱ). Acta Cryst. 2013, E69, m96.

    25. [25]

      Pe΄rez-Puente, P.; Jesu΄s de E.; Flores, J. C.; Go΄mez-Sal, P. Synthesis of 2-(N-arylimino-κN-methyl)pyrrolide-κN complexes of nickel. J. Organomet. Chem. 2008, 693, 3902–3906.  doi: 10.1016/j.jorganchem.2008.09.067

    26. [26]

      Su, B. Y.; Li, X. T.; Wang, X. D.; Li, Q. D. Efficient microwave-assisted syntheses of a series of novel mono(imino)pyrrolyl compounds. Heterocycles 2015, 91, 1955–1963.  doi: 10.3987/COM-15-13265

    27. [27]

      David, M. D.; Dennis, A. W.; Mark, T.; Manfred, B. Synthesis and reactivity of sterically hindered iminopyrrolato complexes of zirconium, iron, cobalt and nickel. J. Chem. Soc., Dalton Trans. 2000, 41, 459–466.

    28. [28]

      Gibson, V. C.; Maddox, P. J.; Newton, C.; Redshaw, C.; Solan, G. A.; White, A. J. P.; Williams, D. J. Chromium(Ⅲ) complexes bearing N, N-chelate ligands as ethene polymerization catalysts. Chem. Commun. 1998, 16, 1651–1652.

    29. [29]

      Song, S. J.; Zhao, W. Z.; Wang, L.; Redshawb, C.; Wang, F. S.; Sun, W. H. Synthesis, characterization and catalytic behavior toward ethylene of cobalt(Ⅱ) and iron(Ⅱ) complexes bearing 2-(1-aryliminoethylidene)quinolines. J. Organomet. Chem. 2011, 696, 3029–3035.  doi: 10.1016/j.jorganchem.2011.06.003

    30. [30]

      Song, S. J.; Xiao, T. P. F.; Redshaw, C.; Hao, X.; Wang, F. S.; Sun, W. H. Iron(Ⅱ) and cobalt(Ⅱ) complexes bearing 8-(1-aryliminoethylidene) quinaldines: synthesis, characterization and ethylene dimerization behavior. J. Organomet. Chem. 2011, 696, 2594–2599.  doi: 10.1016/j.jorganchem.2011.03.039

    31. [31]

      Sun, W. H.; Hao, P.; Zhang, S.; Shi, Q.; Zuo, W.; Tang, X.; Lu, X. Iron(Ⅱ) and cobalt(Ⅱ) 2-(benzimidazolyl)-6-(1-(arylimino)ethyl)pyridyl complexes as catalysts for ethylene oligomerization and polymerization. Organometallics 2007, 26, 2720–2734.  doi: 10.1021/om0700819

    32. [32]

      Xiao, L.; Gao, R.; Zhang, M.; Li, Y.; Cao, X.; Sun, W. H. 2-(1H-2-Benzimidazolyl)-6-(1-(arylimino)ethyl)pyridyl iron(Ⅱ) and cobalt(Ⅱ) dichlorides: syntheses, characterizations, and catalytic behaviors toward ethylene reactivity. Organometallics 2009, 28, 2225–2233.  doi: 10.1021/om801141n

    33. [33]

      Su, B. Y.; Wang, J. X.; Liu, X.; Li, Q. D. Bis(2-{1-[(2, 4, 6-trimethylphenyl)imino]ethylpyrrol-1-ido-κ(2)N, N') nickel(Ⅱ): a supramolecular structure formed by C–H. π(arene) hydrogen bonds. Acta Cryst. 2013, C69, 851–854.

    34. [34]

      Su, B. Y.; Wang, X. D.; Wang, J. X.; Li, X. T. Nickel(Ⅱ) complexes with mono(imino) pyrrole ligands: preparation, structure and ethylene polymerization behavior. J. Coord. Chem. 2015, 68, 4212–4223.  doi: 10.1080/00958972.2015.1103371

    35. [35]

      Sheldrick, G. M. SHELXL-97, Program for Refinement of Crystal Structures. University of Göttingen: Germany 1997.

    36. [36]

      Su, B. Y.; Li, L.; Wang, J. X.; Li, X. Y. N-[1-(1H-pyrrol-2-yl)ethylidene]aniline. Acta Cryst. 2012, E68, o2888

    37. [37]

      Atiqullah, M.; Hammawa, H.; Hamid, H. Modeling the solubility of ethylene and propylene in a typical polymerization diluent: some selected situations. Eur. Polym. J. 1998, 34, 1511–1520.  doi: 10.1016/S0014-3057(98)00005-6

    38. [38]

      Fogg, P. G. T.; Gerrard, W. Solubility of Gasesin Liquids. Wiley, Chichester 1991.

  • 加载中
    1. [1]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    2. [2]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    3. [3]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    4. [4]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    5. [5]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    6. [6]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    7. [7]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    8. [8]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    9. [9]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    10. [10]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    11. [11]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    12. [12]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    13. [13]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    14. [14]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    15. [15]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    16. [16]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    17. [17]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    18. [18]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    19. [19]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    20. [20]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

Metrics
  • PDF Downloads(1)
  • Abstract views(261)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return