Citation: Wen-Yuan XU, Xi KUANG, Fei YAN, Yan WANG, Su-Ying LI, Lin HU. Active Center Changed: Disproportionation Mechanism for Preparing Dimethyldichlorosilane Catalyzed by Core(4T)-shell Catalyst[J]. Chinese Journal of Structural Chemistry, ;2020, 39(6): 1146-1156. doi: 10.14102/j.cnki.0254-5861.2011-2538 shu

Active Center Changed: Disproportionation Mechanism for Preparing Dimethyldichlorosilane Catalyzed by Core(4T)-shell Catalyst

  • Corresponding author: Wen-Yuan XU, xwyktz@163.com
  • Received Date: 19 July 2019
    Accepted Date: 8 January 2020

    Fund Project: the National Natural Science Foundation of China 21563011the National Natural Science Foundation of China 21872049

Figures(6)

  • Dimethyldichlorosilane is a basic raw material for preparing a variety of organosilicon materials. The disproportionation method to synthesize it can solve the problem brought by direct synthesis. The B3LYP/6-31G and MP2/6-311++ G(3df, 2pd) methods were used to calculate the mechanism of the reaction catalyzed by localized core(4T)-shell catalyst. The energy barriers of the rate-determining steps of the main reaction at different active sites 1(5)~4 in the HZSM-5(4T)@γ-Al2O3 catalyst were 165.88, 129.99, 118.66 and 145.55 kJ⋅mol-1, respectively, and those in the side reaction are 131.98, 146.28, 146.53 and 164.17 kJ⋅mol-1, separately. The active site No. 3 was the easiest one to participate in the catalytic reaction. The energy barriers of the rate-determining steps of the main reaction catalyzed by the AlCl3/HZSM-5(4T)@γ-Al2O3 catalyst, involving configurations a and b, are 105.12 and 110.39 kJ⋅mol-1, respectively, and those of the side reaction are 144.26 and 159.55 kJ⋅mol-1, respectively. Both configurations produced dimethyldichlorosilane mainly, and configuration a is easier to catalyze the reaction process. And according to the bond order and locality analysis, the catalytic activity order was: configuration a > configuration b. This conclusion matched with the reaction energy barrier analysis. The AlCl3/HZSM-5(4T)@γ-Al2O3 catalyst had a better catalytic activity than HZSM-5(4T)@γ-Al2O3. The active center of the reaction system of HZSM-5(4T)@γ-Al2O3 was proton, Bronsted acidic center, and that of AlCl3/HZSM-5@γ-Al2O3 could be Lewis acidic center. The source of the Lewis acidic center was the multi-center bond formed by the delocalization of peripheral electrons of the atoms. The frontier orbital theory confirmed the mechanism and good selectivity of the reaction.
  • 加载中
    1. [1]

      Kotov, D. V.; Grinberg, E. E.; Levin, Y. I.; Chernyshenko, A. O. Thermodynamic characteristics of some organosilicon monomers in the temperature range of 700~1500 K. Russ. J. Phys. Chem. A 2015, 89, 1123−1125.  doi: 10.1134/S0036024415060187

    2. [2]

      Pigaleva, M. A.; Elmanovich, I. V.; Temnikov, M. N.; Gallyamov, M. O.; Muzafarov, A. M. Organosilicon compounds in supercritical carbon dioxide: synthesis, polymerization, modification, and production of new materials. Polym. Sci., Ser. B 2016, 58, 235−270.  doi: 10.1134/S1560090416030118

    3. [3]

      Qiu, H.; Yu, W.; Du, Z. Some applications of the Diels-Alder reaction in organosilicon chemistry. Appl. Organomet. Chem. 1995, 9, 163−174.  doi: 10.1002/aoc.590090302

    4. [4]

      Mittov, O. N.; Ponomareva, N. I.; Mittova, I. Y.; Bezryadin, M. N. Formation of nickel silicide films from nickel acetylacetonate and organosilicon compounds. Inorg. Mater. 2001, 37, 941−946.  doi: 10.1023/A:1011606016508

    5. [5]

      Kasymova, E. M.; Burilov, A. R.; Mukmeneva, N. A.; Bukharov, S. V.; Nugumanova, G. N.; Pudovik, M. A.; Konovalov, A. I. Synthesis and some properties of tetrakis-3, 5-di-tert-butyl-4-hydroxybenzylated calix[4]resorcinols. Russ. J. Gen. Chem. 2007, 77, 458−468.  doi: 10.1134/S1070363207030206

    6. [6]

      Ohshita, J.; Kajihara, T.; Tanaka, D.; Ooyama, Y. Preparation of poly(disilanylenetetracyanobutadienyleneoligothienylene)s as new donor-acceptor type organosilicon polymers. J. Organomet. Chem. 2014, 749, 255−260.  doi: 10.1016/j.jorganchem.2013.10.007

    7. [7]

      Seyferth, D. Dimethyldichlorosilane and the direct synthesis of methylchlorosilanes. The key to the silicones industry. Organometallics 2001, 20, 4978−4992.  doi: 10.1021/om0109051

    8. [8]

      Zhang, P.; Duan, J. H.; Chen, G. H.; Wang, W. W. Effect of bed characters on the direct synthesis of dimethyldichlorosilane in fluidized bed reactor. Sci. Rep. 2015, 5, 8827−8834.  doi: 10.1038/srep08827

    9. [9]

      Gordon, A. D.; Hinch, B. J.; Strongin, D. R. Effects of individual promoters on the direct synthesis of methylchlorosilanes. J. Catal. 2009, 266, 291−298.  doi: 10.1016/j.jcat.2009.06.026

    10. [10]

      Ren, Y. J.; Sun, Y. L.; Wen, B.; Yang, D. H. Study on synthesis of dimethyldichlorosilane in micro-fixed bed reactor. Silicone Mater. 2013, 27, 83−86.

    11. [11]

      Harding, W. A.; Harold, S. Disproportionation of siliconhalides. US Patent, 3346349 A 1967−10−10.

    12. [12]

      Liu, R. X.; Wang, R.; Dong, Y. J.; Wang, X. Process of chlorosilane disproportionation for silane preparation. J. Mater. Sci. Eng. 2017, 35, 447−449.

    13. [13]

      Auner, N, Weis, J. Chapter 56. Base-catalyzed disproportionation of tetrachlorodimethyldisilane-investigations of the heterogeneous catalysts. Frye in Organosilicon Chemistry IV: from Molecules to Materials. V. 2. Wiley-VCH Verlag GmbH & Co. KGaA, Germany 2008, p341−345.

    14. [14]

      Cai, D. L.; Zhang, L. Treatment of organic silicon high boiling residues by catalytic pyrolysis process. Environ. Prot. Chem. Ind. 2017, 37, 487−490.

    15. [15]

      Yuan, C. Y.; Wang, Z. W.; Zhang, H. T.; Tan, Z. G.; Pan, Z. S.; Gao, X. H. Preparation of core-shell composite of Y@Mesoporous alumina and its application in heavy oil cracking. China Pet. Process. Petrochem. Technol. 2016, 18, 29−35.

    16. [16]

      Tsakoumis, N. E.; Walmsley, J. C.; Rønning, M.; van Beek, W.; Rytter, E.; Holmen, A. Evaluation of reoxidation thresholds for γ-Al2O3-supported cobalt catalysts under Fischer-tropsch synthesis conditions. J. Am. Chem. Soc. 2017, 139, 3706−3715.  doi: 10.1021/jacs.6b11872

    17. [17]

      Zeng, Y.; Zhu, X.; Mei, D.; Ashford, B.; Tu, X. Plasma-catalytic dry reforming of methane over γ-Al2O3, supported metal catalysts. Catal. Today 2015, 256, 80−87.  doi: 10.1016/j.cattod.2015.02.007

    18. [18]

      Lukianova, O. A.; Ivanov, O. N. The effect of Al2O3-MgO additives on the microstructure of spark plasma sintered silicon nitride. Ceram. Int. 2018, 44, 390−393.  doi: 10.1016/j.ceramint.2017.09.188

    19. [19]

      Xue, J. G.; Long, J. F.; Gong, S. X.; Shi, H. B.; Feng, C. X. Preparation of dimethyldichlorosilane disproportionated from methyltrichlorosilane. Silicone Mater. 2000, 14, 20−22.

    20. [20]

      Kravchyk, K. V.; Wang, S.; Piveteau, L.; Kovalenko, M. V. Efficient aluminum chloride-natural graphite battery. Chem. Mater. 2017, 29, 4484−4492.  doi: 10.1021/acs.chemmater.7b01060

    21. [21]

      Peng, L.; Gao, X.; Chen, K. Catalytic upgrading of renewable furfuryl alcohol to alkyl levulinates using AlCl3 as a facile, efficient, and reusable catalyst. Fuel 2015, 160, 123−131.  doi: 10.1016/j.fuel.2015.07.086

    22. [22]

      Wood, L. H. Redistributing silalkylenes in an alkyl-rich silalkylene-containing residue. US. Patent, 6013824 2000−1−11.

    23. [23]

      Feng, Y. B.; Dai, Y. N.; Liu, Y. C.; Yang, B. Vacuum sublimation of anhydrous aluminum chloride. Chin. J. Vac. Sci. Technol. 2009, 29, 336−339.

    24. [24]

      Wang, X. F.; Tan, J.; Fan, H.; Bu, Z. Y.; Li, B. G. Preparation of dimethyldichlorosilane by redistributing methyltrichlorosilane and trimethylchlorosilane with AlCl3 supported catalysts. Chem. Eng. -New York 2006, 34, 66−69.

    25. [25]

      Liu, Y. P. The Research of Methylthichlorosilane Disproportionation Catalyzed by Series of Al2O3. Master Thesis, East China Jiaotong University 2015, p18−27.

    26. [26]

      Xu, W. Y.; Li, X. Y.; Yang, M.; Yang, S. M.; Fang, Z. L.; Hong, S. G. Redistribution mechanism of chloromethylsilanes catalyzed by HZSM-5 with big and small apertures. Chin. J. Struct. Chem. 2018, 37, 543−550.

    27. [27]

      Xu, W. Y.; Yang, M.; Liu, Y. X.; Guo, Z. R.; Hu, L.; Yang, S. M.; Hong, S. G. Disproportionation mechanism of methylchlorosilanes catalyzed by different clusters AlCl3/ZSM-5. J. Chem. Sci. 2018, 130, 1−7.  doi: 10.1007/s12039-017-1403-2

    28. [28]

      Omojola, T.; Cherkasov, N.; McNab, A. I.; Lukyanov, D. B.; Anderson, J. A.; Rebrov, E. V.; van Veen, A. C. Mechanistic insights into the desorption of methanol and dimethyl ether over ZSM-5 catalysts. Catal. Lett. 2017, 148, 1−15.

    29. [29]

      Gu, J.; Gorb, L.; Leszczynski, J. A DFT study of the models of the bronsted acid sites of zeolite catalysts. Struct. Chem. 1998, 9, 319−326.  doi: 10.1023/A:1022406808935

    30. [30]

      Ao, Z. Y.; Zhang, N.; Jian, L. J.; Fu, Q.; Zhang, F.; Chen, C. Synthesis of dimethyldichlorosilane by catalytic disproportionation of methyltrichlorosilane over a H2SO4 activated Chinese bentonite. Phosphorus Sulfur. 2011, 186, 2135−2144.  doi: 10.1080/10426507.2011.590167

    31. [31]

      Liu, Y.; Zou, Y.; Jiang, H.; Gao, H.; Chen, R. Deactivation mechanism of beta-zeolite catalyst for synthesis of cumene by benzene alkylation with isopropanol. Chin. J. Chem. Eng. 2017, 25, 1195−1201.  doi: 10.1016/j.cjche.2016.11.001

    32. [32]

      Guo, X. H.; Ma, J. Q.; Ge, H. G. CoFe2O4@TiO2@Au core-shell structured microspheres: synthesis and photocatalyltic properties. Russ. J. Phys. Chem. A 2017, 91, 2643−2650.  doi: 10.1134/S0036024417130118

    33. [33]

      Shi, B. N.; Wan, J. F.; Liu, C. T.; Yu, X. J.; Ma, F. W. Synthesis of CoFe2O4/MCM-41/TiO2, composite microspheres and its performance in degradation of phenol. Mater. Sci. Semicond. Process. 2015, 37, 241−249.  doi: 10.1016/j.mssp.2015.03.048

    34. [34]

      Meng, S. C.; Wang, H.; Qing, M.; Qiu, C. W.; Yang, Y.; Li, Y. W. Preparation and characterization of SiO2@Fe2O3 core-shell catalysts. J. Fuel. Chem. Technol. 2015, 43, 692−700.  doi: 10.1016/S1872-5813(15)30020-7

    35. [35]

      Inshina, O.; Korduban, A.; Tel'biz, G.; Brei, V. Synthesis and study of superacid ZrO2-SiO2-Al2O3 mixed oxide. Adsorpt. Sci. Technol. 2017, 35, 439−447.  doi: 10.1177/0263617417694887

    36. [36]

      Hu, X. C.; Wang, W. W.; Gu, Y. Q.; Jin, Z.; Song, Q. S.; Jia, C. J. Co-SiO2 nanocomposite catalysts for COx-free hydrogen production by ammonia decomposition. ChemPlusChem. 2017, 82, 368−375.  doi: 10.1002/cplu.201600444

    37. [37]

      Vasilyeva, S. V.; Shtil, A. A.; Petrova, A. S.; Balakhnin, S. M.; Achigecheva, P. Y.; Stetsenko, D. A.; Silnikov, V. N. Conjugates of phosphorylated zalcitabine and lamivudine with SiO2 nanoparticles: synthesis by CuAAC click chemistry and preliminary assessment of anti-HIV and antiproliferative activity. Bioorg. Med. Chem. 2017, 25, 1696−1702.  doi: 10.1016/j.bmc.2017.01.038

    38. [38]

      Gong, W.; Meng, X.; Tang, X.; Ji, P. Core-shell MnO2-SiO2 nanorods for catalyzing the removal of dyes from water. Catalysts 2017, 7, 1−11.

    39. [39]

      Sohail, M.; Xue, H. L.; Jiao, Q.; Li, H. S.; Khan, K.; Wang, S. S.; Feng, C. H.; Zhao, Y. Synthesis of well-dispersed TiO2/CNTs@CoFe2O4, nanocomposites and their photocatalytic properties. Mater. Res. Bull. 2017, 125−130.

    40. [40]

      Zhao, H. B.; Li, M.; Luo, G. Nickel based ethanol steam reforming catalysts: mechanism, deactivation and structure-activity relationship. Chem. Ind. Eng. Prog. 2018, 419−428.

    41. [41]

      Evans, R.; Sluckin, T. J. A density functional theory for inhomogeneous charged fluids. Mol Phys. 1980, 40, 413−435.  doi: 10.1080/00268978000101581

    42. [42]

      Chen, H.; Zhang, Y. F.; Li, Y.; Huang, S. P.; Qi, J. Y.; Liu, R. A DFT study on the Adsorption of CO2 Molecules on CaO (001) surface at different coverages. Chin. J. Struct. Chem. 2019, 38, 17−24.

    43. [43]

      Shahab, S.; Sheikhi, M.; Khaleghian, M.; Balakhanava, I.; Azarakhshi, F. DFT study of physisorption effect of the curcumin on CNT(8, 0-6) nanotube for biological applications. Chin. J. Struct. Chem. 2019, 38, 37−52.

    44. [44]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A. 1, Gaussian, Inc., Wallingford CT 2009.

    45. [45]

      Burger, S. K.; Ayers, P. W. Dual grid methods for finding the reaction path on reduced potential energy surfaces. J. Chem. Theory Comput. 2010, 6, 1490−1497.  doi: 10.1021/ct100012y

    46. [46]

      Xu, W. Y.; Kuang, X.; Fang, Z. L.; Guo, Z. R.; Yang, S. M.; Hong, S. G. Mechanism study on the preparation of dimethyldichlorosilane catalyzed by γ-Al2O3. Proceedings of 2017 3rd international conference on applied mechanics and mechanical automation (AMMA2017). Phuket: DEStech Publications 2017, 6, p327−332.

    47. [47]

      Hirunsit, P.; Faungnawakij, K.; Namuangruk, S.; Luadthong, C. Catalytic behavior and surface species investigation over γ-Al2O3 in dimethyl ether hydrolysis. Appl. Catal., A 2013, 460, 99−105.

    48. [48]

      Sun, J.; Lu, W. C.; Zhang, W.; Zhao, L. Z.; Li, Z. S.; Sun, C. C. Theoretical study on (Al2O3)n (n = 1~10 and 30) fullerenes and H2 adsorption properties. Inorg. Chem. 2008, 47, 2274−2279.  doi: 10.1021/ic7011364

    49. [49]

      Trombetta, M.; Armaroli, T.; Alejandre, A. G.; Solis, J. R.; Busca, G. An FT-IR study of the internal and external surfaces of HZSM-5 zeolite. Appl. Catal., A 2000, 192, 125−136.

    50. [50]

      Bani-Fwaz, M. Z.; Fazary, A. E.; Becker, G. Synthesis, crystal structures, and quantum chemical calculations of novel phosphonium salt-1, 5-diphospha-3-phosphonia-tricyclo pentane cations. J. Organomet. Chem. 2017, 846, 51−65.

  • 加载中
    1. [1]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    2. [2]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    3. [3]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    4. [4]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    5. [5]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    6. [6]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    7. [7]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    8. [8]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    9. [9]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    10. [10]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

    11. [11]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    12. [12]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    13. [13]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    14. [14]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

    15. [15]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    16. [16]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    17. [17]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    18. [18]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    19. [19]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    20. [20]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

Metrics
  • PDF Downloads(2)
  • Abstract views(219)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return