Citation: Chuang LI, Yong-Ke HE, Na SHAO, Gang XIONG, Shuang-Yan WU, Li-Xin YOU, Ya-Guang SUN. Syntheses, Structures and Photoluminescence of Novel Lanthanide-organic Frameworks Based on 1, 4-Bis(3, 5-dicarboxylic pyrazol-1-ylmethyl) Benzene[J]. Chinese Journal of Structural Chemistry, ;2020, 39(5): 960-966. doi: 10.14102/j.cnki.0254-5861.2011-2537 shu

Syntheses, Structures and Photoluminescence of Novel Lanthanide-organic Frameworks Based on 1, 4-Bis(3, 5-dicarboxylic pyrazol-1-ylmethyl) Benzene

  • Corresponding author: Yong-Ke HE, yk-h@163.com Ya-Guang SUN, sunyaguang@syuct.edu.cn
  • Received Date: 17 July 2019
    Accepted Date: 28 October 2019

    Fund Project: the National Natural Science Foundation of China 21701116the National Natural Science Foundation of China 21671139the National Natural Science Foundation of China 21501122the Doctor Scientific Research Foundation of Liaoning Province 201601201the Doctor Scientific Research Foundation of Liaoning Province 201601193Program for Liaoning Innovative Research Team in University 2018012

Figures(4)

  • Two isomorphic 3D lanthanide metal-organic frameworks, {[Tb(L)0.5(OX)0.5(H2O)2DMF].DMF}n (1) and {[Dy(L)0.5(OX)0.5(H2O)2DMF].DMF}n (2), have been prepared under solvothermal conditions based on 1, 4-bis(3, 5-dicarboxylicpyrazol-1-ylmethyl) benzene (H4L), oxalis acid (H2OX) and lanthanide ions. Compound 1 crystallizes in monoclinic system, space group P21/c with a = 9.418(15), b = 15.23(2), c = 14.47(2) Å, β = 100.07(3)°, V = 2044(5) Å3, Z = 4, Mr = 590.3 g/mol, Dc = 1.919 g/cm3, μ = 3.524 mm-1, F(000) = 1168, R = 0.0893 and wR = 0.1902 for 3486 observed reflections (I > 2σ(I)). In compound 1, the central terbium(Ⅲ) ions are coordinated with eight atoms, and two neighboring terbium(Ⅲ) ions are linked together by one bridging oxalic acid group to give rise to a [Tb2(OX)(L)4] unit. Each [Tb2(OX)(L)4] unit connects to the surrounding six identical ones by the oxygen atoms bridging to lead to a 3D framework. Compound 1 exhibits strong luminescent emissions at the solid state owing to the antenna effect of the ligand.
  • 加载中
    1. [1]

      Li, J. R.; Sculley, J.; Zhou, H. C. Metal-organic frameworks for separations. Chem. Rev. 2012, 112, 869–932.  doi: 10.1021/cr200190s

    2. [2]

      Silva, P.; FVilela, S. M.; Tome, J. P. C.; Almeida Paz, F. Á. Multifunctional metal-organic frameworks: from academia to industrial applications. Chem. Soc. Rev. 2015, 44, 6774–6803.  doi: 10.1039/C5CS00307E

    3. [3]

      Lustig, W. P.; Mukherjee, S.; Mukherjee, N. D.; Rudd, A. V.; Desai, J.; Li, S. K. Ghosh, metal-organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 2017, 46, 3242–3285.  doi: 10.1039/C6CS00930A

    4. [4]

      Zhang, Y. M.; Yuan, S.; Day, G.; Wang, X.; Yang, X. Y.; Zhou, H. C. Luminescent sensors based on metal-organic frameworks. Coord. Chem. Rev. 2018, 354, 28–45.  doi: 10.1016/j.ccr.2017.06.007

    5. [5]

      Cui, Y. J.; Yue, Y. F.; Qian, G. D.; Chen, B. L. Luminescent functional metal-organic frameworks. Chem. Rev. 2012, 112, 1126–1162.  doi: 10.1021/cr200101d

    6. [6]

      Hu, Z. C.; Deibert, B. J.; Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815–5840.  doi: 10.1039/C4CS00010B

    7. [7]

      Karmakar, A.; Samanta, P.; Desai, A. V.; Ghosh, S. K. Guest responsive metal-organic frameworks as scaffolds for separation and sensing applications. Acc. Chem. Res. 2017, 50, 2457–2469.  doi: 10.1021/acs.accounts.7b00151

    8. [8]

      Yan, B. Lanthanide-functionalized metal-organic framework hybrid systems to create multiple luminescent centers for chemical sensing. Acc. Chem. Res. 2017, 50, 2789–2798.  doi: 10.1021/acs.accounts.7b00387

    9. [9]

      Heine, J.; Müller-Buschbaum, K. Engineering metal-based luminescence in coordination polymers and metal-organic frameworks. Chem. Soc. Rev. 2013, 42, 9232–9242.  doi: 10.1039/c3cs60232j

    10. [10]

      Karmakar, A.; Samanta, P.; Desai, A. V.; Ghosh, S. K. Guest-responsive metal-organic frameworks as scaffolds for separation and sensing applications. Acc. Chem. Res. 2017, 50, 2457–2469.  doi: 10.1021/acs.accounts.7b00151

    11. [11]

      Ye, J. W.; Zhou, H. L.; Liu, S. Y.; Cheng, X. N.; Lin, R. B.; Qi, X. L.; Zhang, J. P.; Chen, X. M. Encapsulating pyrene in a metal-organic zeolite for optical sensing of molecular oxygen. Chem. Mater. 2015, 27, 8255–8260.  doi: 10.1021/acs.chemmater.5b03955

    12. [12]

      Zhang, S. Y.; Shi, W.; Cheng, P.; Zaworotko, M. J. A mixed-crystal lanthanide zeolite-like metal-organic framework as a fluorescent indicator for lysophosphatidic acid, a cancer biomarker. J. Am. Chem. Soc. 2015, 137, 12203–12206.  doi: 10.1021/jacs.5b06929

    13. [13]

      Zhou, J. M.; Li, H. H.; Zhang, H.; Shi, H. M.; Li, W.; Cheng, P. A bimetallic lanthanide metal-organic material as a self-calibrating color-gradient luminescent sensor. Adv. Mater. 2015, 27, 7072–7077.  doi: 10.1002/adma.201502760

    14. [14]

      Li, Y.; Zhang, S. S.; Song, D. T. A luminescent metal-organic framework as a turn-on sensor for DMF vapor. Angew. Chem. Int. Ed. 2013, 52, 710–713.  doi: 10.1002/anie.201207610

    15. [15]

      Chen, B. L.; Yang, Y.; Zapata, F.; Lin, G. N.; Qian, G. D.; Lobkovsky, E. B. Luminescent open metal sites within a metal-organic framework for sensing small molecules. Adv. Mater. 2007, 19, 1693–1696.  doi: 10.1002/adma.200601838

    16. [16]

      Hao, J. N.; Yan, B. Determination of urinary 1-hydroxypyrene for biomonitoring of human exposure to polycyclic aromatic hydrocarbons carcinogens by a lanthanide-functionalized metal-organic framework sensor. Adv. Funct. Mater. 2017, 27, 1603856.  doi: 10.1002/adfm.201603856

    17. [17]

      Steemers, F. J.; Verboom, W.; Reinhoudt, D. N.; van der Tol, E. B.; Verhoeven, J. W. New sensitizer-modified calyx arenes enabling near-UV excitation of complexed luminescent lanthanide ions. J. Am. Chem. Soc. 1995, 117, 9408–9414.  doi: 10.1021/ja00142a004

    18. [18]

      Montgomery, C. P.; Murray, B. S.; New, E. J.; Pal, R.; Parker, D. Cell-penetrating metal complex optical probes: targeted and responsive systems based on lanthanide luminescence. Acc. Chem. Res. 2009, 42, 925–937.  doi: 10.1021/ar800174z

    19. [19]

      Bunzli, J. C. G. Benefiting from the unique properties of lanthanide ions. Acc. Chem. Res. 2006, 39, 53–61.  doi: 10.1021/ar0400894

    20. [20]

      Yang, X. G.; Lin, X. Q.; Zhao, Y. B.; Zhao, Y. S.; Yan, D. P. Lanthanide metal-organic framework microrods: colored optical waveguides and chiral polarized emission. Angew. Chem. Int. Ed. 2017, 56, 7853–7857.  doi: 10.1002/anie.201703917

    21. [21]

      Moore, E. G.; Samuel, A. P. S.; Raymond, K. N. From antenna to assay: lessons learned in lanthanide luminescence. Acc. Chem. Res. 2009, 42, 542–552.  doi: 10.1021/ar800211j

    22. [22]

      Bunzli, J. C.; Piguet, C. Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 2005, 34, 1048–1077.  doi: 10.1039/b406082m

    23. [23]

      Latva, M.; Takalo, H.; Mukkala, V. M.; Matachescu, C.; Rodríguez-Ubis, J. C.; Kankare, J. Correlation between the lowest triplet state energy level of the ligand and lanthanide(Ⅲ) luminescence quantum yield. J. Lumin. 1997, 75, 149–169.  doi: 10.1016/S0022-2313(97)00113-0

    24. [24]

      Pan, M.; Zhu, Y. X.; Wu, K.; Chen, L.; Hou, Y. J.; Yin, S. Y.; Wang, H. P.; Fan, Y. N.; Su, C. Y. Epitaxial growth of hetero-Ln-MOF hierarchical single crystals for domain-and orientation-controlled multicolor luminescence 3D coding capability. Angew. Chem. Int. Ed. 2017, 56, 14582–14586.  doi: 10.1002/anie.201708802

    25. [25]

      Lustig, W. P.; Mukherjee, S.; Rudd, N. D.; Desai, A. V.; Li, J.; Ghosh, S. K. Metal-organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 2017, 46, 3242–3285.  doi: 10.1039/C6CS00930A

    26. [26]

      Hao, J. N.; Xu, X. Y.; Fei, H. H.; Li, L. C.; Yan, B. Functionalization of metal-organic frameworks for photoactive materials. Adv. Mater. 2018, 30, 1705634.  doi: 10.1002/adma.201705634

    27. [27]

      Zhang, K. Y.; Yu, Q.; Wei, H. J.; Liu, S. J.; Zhao, Q.; Huang, W. Long-lived emissive probes for time-resolved photoluminescence bioimaging and biosensing. Chem. Rev. 2018, 118, 1770–1839  doi: 10.1021/acs.chemrev.7b00425

    28. [28]

      Dolgopolova, E. A.; Rice, A. M.; Martin, C. R.; Shustova, N. B. Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements. Chem. Soc. Rev. 2018, 47, 4710–4728.  doi: 10.1039/C7CS00861A

    29. [29]

      Sheldrick, G. M. SHELXTL NT Version 5.1, Program for Solution and Refinement of Crystal Structures. University of Göttingen: Germany 1997.

    30. [30]

      Xia, Y. P.; Li, Y. W.; Li, D. C.; Yao, Q. X.; Du, Y. C.; Dou, J. M. A new Cd (Ⅱ)-based metal-organic framework for highly sensitive fluorescence sensing of nitrobenzene. CrystEngComm. 2015, 17, 2459–2463.  doi: 10.1039/C5CE00162E

    31. [31]

      Qin, X.; Liu, X. W.; Huang, W.; Bettinelli, M.; Liu, X. G. Lanthanide-activated phosphors based on 4f-5d optical transitions: theoretical and experimental aspects. Chem. Rev. 2017, 117, 4488–4527.  doi: 10.1021/acs.chemrev.6b00691

    32. [32]

      Kumar, P.; Singh, S.; Gupta, B. K. Future prospects of luminescent nanomaterial based security inks: from synthesis to anti-counterfeiting applications. Nanoscale 2016, 8, 14297–14340  doi: 10.1039/C5NR06965C

    33. [33]

      Wang, Z.; Fan, H. T.; Wang, H. F.; Zhao, Q.; Liu, S. J. Dual functional methoxyterephthalic acid terbium complex with luminescence and magnetim. Chin. J. Struct. Chem. 2018, 37, 1349–1355.

    34. [34]

      Gu, X. Y.; Jin, C. C.; Cheng, J. W. A series of lanthanide-organic frameworks constructed by Ln4(OH)4 clusters and mixed ligands. Chin J. Struct. Chem. 2019, 38, 103–108.

    35. [35]

      Zhang, M. B.; Zhang, M. Z.; Chen, X.; Hu, R. X. Syntheses and characterizations of the lanthanide compounds with 4-(4-pyridyl) benzoate and 2, 6-pyridinedicarboxylate as ligands. Chin J. Struct. Chem. 2017, 36, 825–830.

    36. [36]

      Su, Q. Q.; Fan, K.; Jin, X. X.; Huang, X. D.; Cheng, S. C.; Luo, L. J.; Li, Y. J.; Xiang, J.; Ko, C. C.; Zheng, L. M.; Lau, T. C. Syntheses, crystal structures and magnetic properties of a series of luminescent lanthanide complexes containing neutral tetradentate phenanthroline-amide ligands. Inorg. Chem. Front. 2019, 6, 1442–1452.

    37. [37]

      Yang, W. T.; Tian, H. R.; Li, J. P.; Hui, Y. F.; He, X.; Li, J. Y.; Dang, S.; Xie, Z. G.; Sun, Z. M. Photochromic terbium phosphonates with photomodulated luminescence and metal ion sensitive detection. Chem. Eur. J. 2016, 22, 15451–15457.  doi: 10.1002/chem.201602779

  • 加载中
    1. [1]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    2. [2]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    3. [3]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    4. [4]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    5. [5]

      Lei WangJun-Jie WuChang-Cun YanWan-Ying YangZong-Lu CheXin-Yu XiaXue-Dong WangLiang-Sheng Liao . Near-infrared organic lasers with ultra-broad emission bands by simultaneously harnessing four-level and six-level systems. Chinese Chemical Letters, 2024, 35(8): 109365-. doi: 10.1016/j.cclet.2023.109365

    6. [6]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    7. [7]

      Lihua MaSong GuoZhi-Ming ZhangJin-Zhong WangTong-Bu LuXian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661

    8. [8]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    9. [9]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    10. [10]

      Yunyu ZhaoChuntao YangYingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865

    11. [11]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    12. [12]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    13. [13]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    14. [14]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    15. [15]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

    16. [16]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    17. [17]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    18. [18]

      Yue Mao Zhonghang Chen Tiankai Sun Wenyue Cui Peng Cheng Wei Shi . Luminescent coordination polymers with mixed carboxylate and triazole ligands for rapid detection of chloroprene metabolite. Chinese Journal of Structural Chemistry, 2024, 43(9): 100353-100353. doi: 10.1016/j.cjsc.2024.100353

    19. [19]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    20. [20]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

Metrics
  • PDF Downloads(1)
  • Abstract views(197)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return