Citation: Hua-Lin CHEN, Qi-Tong HUANG, Shi-Rong HU, Shu-Li TANG, Hao YANG, Zhan-Ming LI. Co3O4/reduced Graphene Oxide Composite as An Enhanced Material for Electrochemical Detection of Paracetamol in Human Serum[J]. Chinese Journal of Structural Chemistry, ;2020, 39(6): 1035-1043. doi: 10.14102/j.cnki.0254-5861.2011-2529 shu

Co3O4/reduced Graphene Oxide Composite as An Enhanced Material for Electrochemical Detection of Paracetamol in Human Serum

  • Corresponding author: Shi-Rong HU, hushirong6666@163.com
  • Received Date: 2 July 2019
    Accepted Date: 23 October 2019

    Fund Project: the Education Bureau of the Fujian province projects JAT160302the Natural Science Foundation of Zhejiang province LQ17C200002the Talents' Start-up Fund of Gannan Medical University projects QD201825

Figures(9)

  • In this paper, we present a novel, reliable and sensitive electrochemical sensor for the determination of paracetamol based on hollow carbon Co3O4 nanosheets/reduced graphene oxide composite (Co3O4/r-GO). The Co3O4/r-GO was prepared via a rapid one-step microwave solvothermal process. Some series of techniques that included scanning electron microscopy, X-ray diffraction and Raman were carried out to characterize the morphology and structure of as-prepared materials. Most importantly, the developed electrochemical sensor exhibited a wide linear range of 0.05 to 900.0 μM and a low detection limit of 14.0 nM (S/N = 3) by using differential pulse voltammetry. Furthermore, the selectivity, repeatability, stability and practical applicability were further studied with satisfactory results.
  • 加载中
    1. [1]

      Bayram, E.; Akyilmaz, E. Development of a new microbial biosensor based on conductive polymer/multiwalled carbon nanotube and its application to paracetamol determination. Sensor. Actuat. B Chem. 2016, 233, 409−418.  doi: 10.1016/j.snb.2016.04.029

    2. [2]

      Luo, J.; Ma, Q.; Wei, W.; Zhu, Y.; Liu, R.; Liu, X. Y. Synthesis of water-dispersible molecularly imprinted electroactive nanoparticles for the sensitive and selective paracetamol detection. ACS Appl. Mater. Inter. 2016, 8, 21028−21038.  doi: 10.1021/acsami.6b05440

    3. [3]

      Wang, X.; Wu, Q. H.; Liu, A. M.; Rodríguez, J. L. Paracetamol: overdose-induced oxidative stress toxicity, metabolism, and protective effects of various compounds in vivo and in vitro. Drug. Metab. 2017, 49, 395−437.  doi: 10.1080/03602532.2017.1354014

    4. [4]

      Ejaz, A.; Jeon, S. A highly stable and sensitive GO-XDA-Mn2O3 electrochemical sensor for simultaneous electrooxidation of paracetamol and ascorbic acid. Electrochim. Acta 2017, 245, 742−751.  doi: 10.1016/j.electacta.2017.05.193

    5. [5]

      Ko, J. W.; Shin, J. Y.; Kim, J. W.; Park, S. H.; Shin, N. R.; Lee, I. C.; Shin, I. S.; Moon, C. J.; Kim, S. H.; Kim, S. H.; Kim, J. C. Protective effects of diallyl disulfide against acetaminophen-induced nephrotoxicity: a possible role of CYP2E1 and NF-κB. Food Chem. Toxicol. 2017, 102, 156−165.  doi: 10.1016/j.fct.2017.02.021

    6. [6]

      Ali, N. W.; Abdelwahab, N. S.; Abdelrahman, M. M.; EL-Zeiny, B. A.; Tohamy, S. I. Validated univariateand multivariate spectrophotometric methods for determination of paracetamol, ascorbic acid and pseudoephedrine hydrochloride. Anal. Chem. Lett. 2016, 6, 706−717.  doi: 10.1080/22297928.2016.1246199

    7. [7]

      Liu, X. T.; Na, W. D.; Liu, H.; Su, X. G. Fluorescence turn-off-on probe based on polypyrrole/graphene quantum composites for selective and sensitive detection of paracetamol and ascorbic acid. Biosens. Bioelectron. 2017, 98, 222−226.  doi: 10.1016/j.bios.2017.06.044

    8. [8]

      Fernandes, T. A. P.; Aguiar, J. P.; Fernandes, I.; Pinto, J. F. Quantification of theophylline or paracetamol in milk matrices by high-performance liquid chromatography, journal of pharmaceutical analysis. J. Pharmaceut. Biomed. 2017, 7, 401−405.

    9. [9]

      Cunha, R. R.; Ribeiro, M. M. A. C.; Munoz, R. A. A.; Richter, E. M. Fast determination of codeine, orphenadrine, promethazine, scopolamine, tramadol, and paracetamol in pharmaceutical formulations by capillary electrophoresis. J. Sep. Sci. 2017, 40, 1815−1823.  doi: 10.1002/jssc.201601275

    10. [10]

      Chen, B.; Chen, D.; Li, F.; Lin, X.; Huang, Q. Graphitic porous carbon: efficient synthesis by a combustion method and application as a highly selective biosensor. J. Mater. Chem. B 2018, 6, 7684−7691.  doi: 10.1039/C8TB02139B

    11. [11]

      Huang, Q.; Lin, X.; Zhu, J. J.; Tong, Q. X. Pd-Au@ carbon dots nanocomposite: facile synthesis and application as an ultrasensitive electrochemical biosensor for determination of colitoxin DNA in human serum. Biosens. Bioelectron. 2017, 94, 507−512.  doi: 10.1016/j.bios.2017.03.048

    12. [12]

      Sakthivel, M.; Sivakumar, M.; Chen, S. M.; Hou, Y. S.; Veeramani, V.; Madhu, R. A facile synthesis of Cd(OH)2-rGO nanocomposites for the practical electrochemical detection of acetaminophen. Miyamoto. N. Electroanal. 2017, 29, 280−286.  doi: 10.1002/elan.201600351

    13. [13]

      Fu, L.; Lai, G.; Yu, A. Preparation of β-cyclodextrin functionalized reduced graphene oxide: application for electrochemical determination of paracetamol. RSC Adv. 2015, 5, 76973−76978.  doi: 10.1039/C5RA12520K

    14. [14]

      Huang, T. Y.; Kung, C. W.; Wei, H. Y.; Boopathi, K. M.; Chu, C. W.; Ho, K. C. A high performance electrochemical sensor for acetaminophen based on a rGO-PEDOT nanotube composite modified electrode. J. Mater. Chem. A 2014, 2, 7229−7237.  doi: 10.1039/C4TA00309H

    15. [15]

      Lu, Y.; Yu, L.; Wu, M.; Wang, Y.; Lou, X. W. Construction of complex Co3O4@Co3V2O8 hollow structures from metal-organic frameworks with enhanced lithium storage properties. Adv. Mater. 2018, 30, 1702875−1702884.  doi: 10.1002/adma.201702875

    16. [16]

      Li, G. M.; Chen, Y. Z.; Ouyang, Y.; Yao, D.; Lu, L.; Wang, L.; Xia, X.; Lei, W.; Chen, S. M.; Mandler, D.; Hao, Q. Manganese doped Co3O4 mesoporous nanoneedle array for long cycle-stable supercapacitors. Appl. Surf. Sci. 2019, 469, 941−950.  doi: 10.1016/j.apsusc.2018.11.099

    17. [17]

      Dan, Y. Y.; Sun, Y. Y.; Lu, C.; Feng, W. C.; Liu, G.; Cheng, X. F.; Chen, L. Z.; Cheng, K.; Muralidharan, G. Composite electrodeposited PbO2/Co3O4 on a Ti substrate as positive electrode materials for a hybrid supercapacitor. Chin. J. Struct. Chem. 2019, 38, 882−892.

    18. [18]

      Naqvi, T. K.; Srivastava, A. K.; Kulkarni, M. M.; Siddiqui, A. M.; Dwivedi, P. K. Silver nanoparticles decorated reduced graphene oxide (rGO) SERS sensor for multiple analytes. Appl. Surf. Sci. 2019, 478, 887−895.  doi: 10.1016/j.apsusc.2019.02.026

    19. [19]

      Wei, H. Z.; Wang, X. X.; Li, L.; Gong, Z. H.; Zhang, Y. F.; Jia, G. X. A first-principles study on the gas sensitivity of metal-loaded graphene with an atomic vacancy to O2. Chin. J. Struct. Chem. 2019, 2, 187−194.

    20. [20]

      Zhang, X. F.; Zhang, B. Y.; Liu, S. S.; Kang, H. W.; Kong, W. Q.; Zhang, S. R.; Shen, Y.; Yang, B. C. RGO modified Ni doped FeOOH for enhanced electrochemical and photoelectrochemical water oxidation. Appl. Surf. Sci. 2018, 436, 974−980.  doi: 10.1016/j.apsusc.2017.12.078

    21. [21]

      Ponnaiah, S. K.; Prakash, P.; Vellaichamy, B. A new analytical device incorporating a nitrogen doped lanthanum metal oxide with reduced graphene oxide sheets for paracetamol sensing. Ultrason. Sonochem. 2018, 44, 196−203.  doi: 10.1016/j.ultsonch.2018.02.016

    22. [22]

      Wang, H. J.; Zhan, S. Y.; Li, S. F.; Qu, J. Y. Electrochemical sensor based on palladium-reduced graphene oxide modified with gold nanoparticles for simultaneous determination of acetaminophen and 4-aminopheno. Talanta 2018, 178, 188−194.  doi: 10.1016/j.talanta.2017.09.021

    23. [23]

      Hummers, J. W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339−1339.  doi: 10.1021/ja01539a017

    24. [24]

      Stobinsk, L.; Lesiak, B.; Malolepszy, A.; Mazurkiewicz, M.; Mierzwa, B.; Zemek, J.; Jiricek, P.; Bieloshapka, I. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron. Spectrosc. 2014, 195, 145−154.  doi: 10.1016/j.elspec.2014.07.003

    25. [25]

      Cho, S. H.; Jung, J. W.; Kim, C.; Kim, I. D. Rational design of 1-D Co3O4 nanofibers@ low content graphene composite anode for high performance Li-ion batteries. Sci. Rep. 2017, 7, 45105−9.  doi: 10.1038/srep45105

    26. [26]

      Rivas-Murias, B.; Salgueiriño, V. Thermodynamic CoO-Co3O4 crossover using Raman spectroscopy in magnetic octahedron-shaped nanocrystals. J. Raman Spectrosc. 2017, 48, 837−841.  doi: 10.1002/jrs.5129

    27. [27]

      Heller, E. J.; Yang, Y.; Kocia, L.; Chen, W.; Fang, S.; Borunda, M.; Kaxiras, E. Theory of graphene Raman scattering. ACS Nano. 2016, 10, 2803−2818.  doi: 10.1021/acsnano.5b07676

    28. [28]

      Song, N. J.; Lu, C. X.; Chen, C. M.; Ma, C. L.; Kong, Q. Q. Effect of annealing temperature on the mechanical properties of flexible graphene films. New Carbon Mater. 2017, 32, 221−226.  doi: 10.1016/S1872-5805(17)60119-7

    29. [29]

      Laviron, E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. 1979, 101, 19−28.  doi: 10.1016/S0022-0728(79)80075-3

    30. [30]

      Baccarin, M.; Santos, F.; Vicentini, F.; Zucolotto, V.; Janegitz, B.; Fatibello-Filho, O. Electrochemical sensor based on reduced graphene oxide/carbon black/chitosan composite for the simultaneous determination of dopamine and paracetamol concentrations in urine samples. J. Electroanal. Chem. 2017, 799, 436−443.  doi: 10.1016/j.jelechem.2017.06.052

    31. [31]

      Ibáñez-Redín, G.; Wilson, D.; Gonçalves, D.; Oliveira, O. N. Low-cost screen-printed electrodes based on electrochemically reduced graphene oxide-carbon black nanocomposites for dopamine, epinephrine and paracetamol detection. J. Colloid Interf. Sci. 2018, 515, 101−108.  doi: 10.1016/j.jcis.2017.12.085

  • 加载中
    1. [1]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    2. [2]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    3. [3]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    4. [4]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    5. [5]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    6. [6]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    7. [7]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    8. [8]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    9. [9]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    10. [10]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    11. [11]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    12. [12]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    13. [13]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    14. [14]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    15. [15]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    16. [16]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    17. [17]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    18. [18]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    19. [19]

      Tinghui Yang Min Kuang Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350

    20. [20]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

Metrics
  • PDF Downloads(5)
  • Abstract views(202)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return