Citation: Lu LIU, Abaid Ullah Malik, Mou-Hai SHU. Syntheses, Crystal Structures and Fluorescence Properties of Four Coordination Polymers Based on Enantiomeric 2-(4-Carboxyphenyl)-4, 5-dihydrothiazole-4-carboxylic Acid Ligands[J]. Chinese Journal of Structural Chemistry, ;2020, 39(3): 567-578. doi: 10.14102/j.cnki.0254-5861.2011-2515 shu

Syntheses, Crystal Structures and Fluorescence Properties of Four Coordination Polymers Based on Enantiomeric 2-(4-Carboxyphenyl)-4, 5-dihydrothiazole-4-carboxylic Acid Ligands

  • Corresponding author: Mou-Hai SHU, mhshu@sjtu.edu.cn
  • Received Date: 27 May 2019
    Accepted Date: 20 June 2019

    Fund Project: the National Natural Science Foundation of China 21271129

Figures(10)

  • A pair of enatiomerically pure ligands, (R-)/(S-)2-(4-carboxyphenyl)-4, 5-dihydrothiazole-4-carboxylic acid (H2LR & H2LS), have been synthesized by the reactions of 4-cyanobenzoic acid with L- and D-cysteine, respectively. Four coordination polymers have been prepared from the ligands and structurally determined by single-crystal X-ray diffraction analysis. Complexes 1R and 1S ([NiL(Py)(H2O)]⋅H2O, for 1R, L = (LR)2-; for 1S, L = (LS)2-) exhibit chiral helical one-dimensional chains, and complexes 2R and 2S ({[ZnL2(H2O)3]⋅CH3CN}n, for 2R L = (LR)2-, for 2S L = (LS)2-) are two-dimensional sheets. Luminescent and chir-optical properties have been investigated and compared with the free ligands. The complexes have blue-shift in luminescence spectrum compared with the free ligands.
  • 加载中
    1. [1]

      Morris, R. E.; Bu, X. Induction of chiral porous solids containing only achiral building blocks. Nat. Chem. 2010, 2, 353-361.  doi: 10.1038/nchem.628

    2. [2]

      Kaczorowski, T.; Justyniak, I.; Lipińska, T.; Lipkowski, J.; Lewiński, J. Metal complexes of cinchonine as chiral building blocks: a strategy for the construction of nanotubular architectures and helical coordination polymers. J. Am. Chem. Soc. 2009, 131, 5393-5395.  doi: 10.1021/ja8098867

    3. [3]

      Meng, C. L.; Li, Z. J.; Liu, Y.; Liu, B. Z.; Cui, Y. Synthesis, structure and characterization of a 3D chiral indium carboxylate metal-organic framework based on 1, 1΄-biphenol ligand. Chin. J. Struct. Chem. 2017, 36, 2081-2086.

    4. [4]

      Zhang, F. W.; Zhou, Y. F.; Dong, J. Q.; Liu, B. Z.; Zheng, S. J.; Cui, Y. Synthesis and crystal structure of a novel chiral 3D metal-organic framework based on an N-methyl substituted salan ligand. Chin. J. Struct. Chem. 2014, 33, 1154-1158.

    5. [5]

      Jiao, J. J.; Li, Z. J.; Zheng, F. K.; Liu, B. Z.; Cui, Y. Synthesis, structure and characterization of a 3D chiral carboxylate and phosphonate metalorganic framework based on 1, 1΄-biphenol ligand. Chin. J. Struct. Chem. 2018, 37, 1509-1515.

    6. [6]

      Yoon, M.; Srirambalaji, R.; Kim, K. Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev. 2012, 112, 1196-2310.  doi: 10.1021/cr2003147

    7. [7]

      Xia, Q.; Li, Z.; Tan, C.; Liu, Y.; Gong, W.; Cui, Y. Multivariate metal-organic frameworks as multifunctional heterogeneous asymmetric catalysts for sequential reactions. J. Am. Chem. Soc. 2017, 139, 8259–8266.  doi: 10.1021/jacs.7b03113

    8. [8]

      Ma, L.; Falkowski, J.; Abney, C.; Lin, W. A series of isoreticular chiral metal-organic frameworks as a tunable platform for asymmetric catalysis. Nat. Chem. 2010, 2, 838–846.  doi: 10.1038/nchem.738

    9. [9]

      Falkowski, J. M.; Sawano, T.; Zhang, T.; Tsun, G.; Chen, Y.; Lockard, J. V.; Lin, W. Privileged phosphine-based metal-organic frameworks for broad-scope asymmetric catalysis. J. Am. Chem. Soc. 2014, 136, 5213–5216.  doi: 10.1021/ja500090y

    10. [10]

      Dang, D.; Wu, P.; He, C.; Xie, Z.; Duan, C. Homochiral metal-organic frameworks for heterogeneous asymmetric catalysis. J. Am. Chem. Soc. 2010, 132, 14321–14323.  doi: 10.1021/ja101208s

    11. [11]

      Ye, C.; Zhu, C.; Gong, T.; Shen, E.; Xuan, W.; Cui, Y.; Liu, B. A novel Cu-based metallosalan complex: synthesis, structure and chiral sensor study. Chin. J. Struct. Chem. 2013, 32, 1076–1082.

    12. [12]

      Wanderley, M.; Wang, C.; Wu, C.; Lin, W. A chiral porous metal-organic framework for highly sensitive and enantioselective fluorescence sensing of amino alcohols. J. Am. Chem. Soc. 2012, 134, 9050–9053.  doi: 10.1021/ja302110d

    13. [13]

      Peluso, P.; Mamane, V.; Cossu, S. Homochiral metal-organic frameworks and their application in chromatography enantioseparations. J. Chromatogr. A 2014, 1363, 11–26.  doi: 10.1016/j.chroma.2014.06.064

    14. [14]

      Yang, X. L.; Wu, C. D. Recent advances on porous homochiral coordination polymers containing amino acid synthons. CrystEngComm. 2014, 16, 4907–4918.  doi: 10.1039/C3CE42508H

    15. [15]

      Chen, L.; Kang, J.; Cui, H.; Wang, Y.; Liu, L.; Zhang, L.; Su, C. Y. Homochiral coordination cages assembled from dinuclear paddlewheel nodes and enantiopure ditopic ligands: syntheses, structures and catalysis. Dalton Trans. 2015, 44, 12180–12188.  doi: 10.1039/C4DT03782K

    16. [16]

      Yoon, T. P.; Jacobsen, E. N. Privileged chiral catalysts. Science 2003, 299, 1691–1693.  doi: 10.1126/science.1083622

    17. [17]

      Zhou, Q. L. Privileged Chiral Ligands and Catalysts. John Wiley & Sons 2011.

    18. [18]

      Li, J. B.; Wang, Q.; Liu, H. W.; Yin, X.; Hu, X. X.; Yuan, L.; Zhang, X. B. Engineering of a bioluminescent probe for imaging nitroxyl in live cells and mice. Chem. Commun. 2019, 55, 1758–1761.  doi: 10.1039/C9CC00211A

    19. [19]

      Takakura, H.; Kojima, R.; Kamiya, M.; Kobayashi, E.; Komatsu, T.; Ueno, T.; Terai, T.; Hanaoka, K.; Nagano, T.; Urano, Y. New class of bioluminogenic probe based on bioluminescent enzyme-induced electron transfer: BioLeT. J. Am. Chem. Soc. 2015, 137, 4010–4013.  doi: 10.1021/ja511014w

    20. [20]

      Zhou, X. L.; Shu, M. H. Syntheses, crystal structures and fluorescence properties of two complexes based on a new chiral ligand. Chin. J. Struct. Chem. 2017, 36, 1518-1525.

    21. [21]

      Malik, A. U.; Zhou, X. L.; Kong, S. N.; Li, L. L; Bao, X. L.; Shu, M. H. Homochiral hexanuclear nickel(Ⅱ) metallocyclic structures with high activity for the photocatalytic degradation of organic dyes. Dalton Trans. 2018, 47, 1764–1767.  doi: 10.1039/C7DT04436D

    22. [22]

      Sheldrick, G. M. SHELXT-Integrated space-group and crystal structure determination. Acta Crystallogr. A 2015, 71, 3–8.  doi: 10.1107/S2053273314026370

    23. [23]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3–8.  doi: 10.1107/S2053229614024218

    24. [24]

      Addison, A. W.; Rao, T. N.; Reedijk, J.; van Rijn, J.; Verschoor, G. C. Synthesis, structure, and spectroscopic properties of copper(Ⅱ) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[1, 7-bis(N-methylbenzimidazol-2'-yl)-2, 6-dithiaheptane] copper(Ⅱ) perchlorate. J. Chem. Soc. Dalton Trans. 1984, 1349–1356.

    25. [25]

      Zhang, H.; Jiang, W.; Yang, J.; Liu, Y. Y.; Song, S.; Ma, J. F. Four coordination polymers constructed by a novel octacarboxylate functionalized calix[4]arene ligand: syntheses, structures, and photoluminescence property. CrystEngComm. 2014, 16, 9939–9946.  doi: 10.1039/C4CE01581A

    26. [26]

      Zavakhina, M. S.; Samsonenko, D. G.; Dybtsev, D. N.; Fedin, V. P. Chiral MOF incorporating chiral guests: structural studies and enantiomer-dependent luminescent properties. Polyhedron 2019, 162, 311–315.  doi: 10.1016/j.poly.2019.02.008

    27. [27]

      Kan, W. Q.; Liu, B.; Yang, J.; Liu, Y. Y.; Ma, J. F. A series of highly connected metal-organic frameworks based on triangular ligands and d10 metals: syntheses, structures, photoluminescence, and photocatalysis. Cryst. Growth Des. 2012, 12, 2288–2298.  doi: 10.1021/cg2015644

  • 加载中
    1. [1]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    2. [2]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    3. [3]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    4. [4]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    5. [5]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    6. [6]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    7. [7]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    8. [8]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    9. [9]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    10. [10]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    11. [11]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    12. [12]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    13. [13]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    14. [14]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    15. [15]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    16. [16]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    17. [17]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    18. [18]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    19. [19]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    20. [20]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

Metrics
  • PDF Downloads(2)
  • Abstract views(216)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return