Citation: Geng-Hui LIAO, Xiang-Rong LIU, Shun-Sheng ZHAO, Zai-Wen YANG, Zheng YANG. Crystal Structures, ct-DNA/BSA Binding Properties and Antibacterial Activities of Halogenated Pyridyl Hydrazones[J]. Chinese Journal of Structural Chemistry, ;2020, 39(3): 467-484. doi: 10.14102/j.cnki.0254-5861.2011-2506 shu

Crystal Structures, ct-DNA/BSA Binding Properties and Antibacterial Activities of Halogenated Pyridyl Hydrazones

  • Corresponding author: Xiang-Rong LIU, liuxiangrongxk@163.com
  • Received Date: 19 June 2019
    Accepted Date: 22 October 2019

    Fund Project: the National Natural Science Foundation of China 21073139the National Natural Science Foundation of China 21373158Science and Technology on Combustion and Explosion Laboratory Foundation of Shaanxi 6142603010301

Figures(11)

  • Three new halogenated pyridyl hydrazones, namely 4-chlorobenzaldehyde-4-chlo-ropyridine-2-formyl acylhydrazone (C13H9Cl2N3O, 3a), 4-bromobenzaldehyde-4-chloropyridine-2-formyl acylhydrazone (C13H9BrClN3O, 3b) and 4-iodobenzaldehyde-4-chloropyridine-2-formyl acylhydrazone (C13H9ClIN3O, 3c), have been synthesized and characterized by elemental analysis, IR, 1H NMR, and single-crystal X-ray diffraction. The X-ray diffraction analysis revealed that 3a~3c crystallize in monoclinic with space group Cc. The units of 3a~3c were linked by intermolecular N–H···X (X = Cl, Br, I) hydrogen bonds into 2D layered structures, which were further extended into 3D networks by a series of π-π stacking interactions. Thermogravimetric analysis showed that all of them possessed higher thermal stabilities. The reactivities toward calf thymus DNA (ct-DNA) and bovine serum albumin (BSA) of 3a~3c were investigated by UV-vis and fluorescent spectroscopy as well as molecular docking simulation. Both theoretical and experimental results indicated that 3a~3c bound to ct-DNA in the mode of minor groove binding, and interacted with BSA through the hydrophobic cavity near TRP213. Besides, the orders of binding affinities of 3a~3c to ct-DNA and BSA were both 3c > 3b > 3a, which were the same as that of antibacterial activities. Thus, the interactions of iodinated acylhydrazone with biological targets were stronger than that of chlorinated and brominated acylhydrazones, which provided a representative case for halogenation of lead compounds in rational drug design.
  • 加载中
    1. [1]

      Carcelli, M.; Rogolino, D.; Gatti, A.; De Luca, L.; Sechi, M.; Kumar, G.; White, S. W.; Stevaert, A.; Naesens, L. N-acylhydrazone inhibitors of influenza virus PA endonuclease with versatile metal binding modes. Sci. Rep. 2016, 6, 31500.  doi: 10.1038/srep31500

    2. [2]

      Badiger, D. S.; Hunoor, R. S.; Patil, B. R.; Vadavi, R. S.; Mangannavar, C. V.; Muchchandi, I. S.; Gudasi, K. B. Synthesis, physico-chemical characterization and antimicrobial activities of 3-methoxysalicylaldehyde-2-aminobenzoylhydrazone and its transition metal complexes. J. Mol. Struct. 2012, 1019, 159–165.  doi: 10.1016/j.molstruc.2012.02.062

    3. [3]

      Congiu, C.; Onnis, V. Synthesis and biological evaluation of novel acylhydrazone derivatives as potential antitumor agents. Bioorg. Med. Chem. 2013, 21, 6592–6599.  doi: 10.1016/j.bmc.2013.08.026

    4. [4]

      Liu, Y. C.; Zhang, K. J.; Lei, R. X.; Liu, J. N.; Zhou, T. L.; Yang, Z. Y. DNA-binding and anti-oxidation properties of binuclear lanthanide(Ⅲ) complexes of 8-hydroxyquinoline-7-carbaldehyde-(isonicotinyl)hydrazone. J. Coord. Chem. 2012, 65, 2041– 2054.  doi: 10.1080/00958972.2012.683485

    5. [5]

      Mazur, L.; Jarzembska, K. N.; Kamiński, R.; Hoser, A. A.; Madsen, A. Ø.; Pindelska, E.; Zielińska-Pisklak, M. Crystal structures and thermodynamic properties of polymorphs and hydrates of selected 2-pyridinecarboxaldehyde hydrazones. Cryst. Growth. Des. 2016, 16, 3101–3112.  doi: 10.1021/acs.cgd.5b01673

    6. [6]

      Ranga, R.; Sharma, V.; Kumar, V. New thiazolidinyl analogs containing pyridine ring: synthesis, biological evaluation and QSAR studies. Med. Chem. Res. 2013, 22, 1538–1548.  doi: 10.1007/s00044-012-0149-0

    7. [7]

      Hallengren, B.; Hegarty, M. P.; Forsgren, A.; Ericson, L. E.; Melander, A. 3, 4-Dihydroxypyridine: a potential antithyroid drug. Acta Endocrinologica 1987, 114, 305–307.

    8. [8]

      Balzarini, J.; Stevens, M.; De Clercq, E.; Schols, D.; Pannecouque, C. Pyridine N-oxide derivatives: unusual anti-HⅣ compounds with multiple mechanisms of antiviral action. J. Antimicrob. Chemoth. 2005, 55, 135–138.  doi: 10.1093/jac/dkh530

    9. [9]

      Hosni, H.; Abdulla, M. Anti-inflammatory and analgesic activities of some newly synthesized pyridinedicarbonitrile and benzopyranopyridine derivatives. Acta Pharm. 2008, 58, 175–186.  doi: 10.2478/v10007-008-0005-4

    10. [10]

      Bera, P.; Brandão, P.; Mondal, G.; Jana, H.; Jana, A.; Santra, A.; Bera, P. Synthesis of a new pyridinyl thiazole ligand with hydrazone moiety and its cobalt(Ⅲ) complex: X-ray crystallography, in vitro, evaluation of antibacterial activity. Polyhedron 2017, 134, 230–237.  doi: 10.1016/j.poly.2017.06.024

    11. [11]

      Ren, J.; He, Y.; Chen, W. H.; Chen, T. T.; Wang, G.; Wang, Z.; Xu, Z. J.; Luo, X. M.; Zhu, W. L.; Jiang, H. L.; Shen, J. S.; Xu, Y. C. Thermodynamic and structural characterization of halogen bonding in protein-ligand interactions: a case study of PDE5 and its inhibitors. J. Med. Chem. 2014, 57, 3588–3593.  doi: 10.1021/jm5002315

    12. [12]

      Byeon, S. R.; Lee, J. H.; Sohn, J. H.; Kim, D. C.; Shin, K. J.; Yoo, K. H.; Mook-Jung, I.; Lee, W. K.; Kim, D. J. Bis-styrylpyridine and bis-styrylbenzene derivatives as inhibitors for Aβ fibril formation. Bioorg. Med. Chem. Lett. 2007, 17, 1466–1470.  doi: 10.1016/j.bmcl.2006.10.090

    13. [13]

      Fais, A.; Kumar, A.; Medda, R.; Pintus, F.; Delogu, F.; Matos, M. J.; Era, B.; Delogu, G. L. Synthesis, molecular docking and cholinesterase inhibitory activity of hydroxylated 2-phenylbenzofuran derivatives. Bioorg. Chem. 2019, 84, 302–308.  doi: 10.1016/j.bioorg.2018.11.043

    14. [14]

      Zhang, J. P.; Li, X. Y.; Dong, Y. W.; Qin, Y. G.; Li, X. L.; Song, B. A.; Yang, X. L. Synthesis and biological evaluation of 4-methyl-1, 2, 3-thiadiazole-5-carboxaldehyde benzoyl hydrazone derivatives. Chin. Chem. Lett. 2017, 28, 1238–1242.  doi: 10.1016/j.cclet.2017.02.002

    15. [15]

      Xue, F.; Xie, C. Z.; Zhang, Y. W.; Qiao, Z.; Qiao, X.; Xu, J. Y.; Yan, S. P. Two new dicopper(Ⅱ) complexes with oxamido-bridged ligand: synthesis, crystal structures, DNA binding/cleavage and BSA binding activity. J. Inorg. Biochem. 2012, 115, 78–86.  doi: 10.1016/j.jinorgbio.2012.05.018

    16. [16]

      Qi, S.; Li, Y. H.; Yang, Y.; He, Y. T.; Cai, J.; Lin, S. W.; Yue, S. M. Syntheses, crystal structures and DNA-binding properties of Zn(Ⅱ), Ni(Ⅱ) and Co(Ⅱ) compounds containing thiazole derivatives. Chin. J. Struct. Chem. 2018, 37, 1945–1959.

    17. [17]

      Bi, S. Y.; Zhou, H. F.; Wu, J.; Sun, X. Y. Micronomicin/tobramycin binding with DNA: fluorescence studies using of ethidium bromide as a probe and molecular docking analysis. J. Biomol. Struct. Dyn. 2019, 37, 1464–1476.  doi: 10.1080/07391102.2018.1461138

    18. [18]

      Tian, F. F.; Jiang, F. L.; Han, X. L.; Xiang, C.; Ge, Y. S.; Li, J. H.; Zhang, Y.; Li, R.; Ding, X. L.; Liu, Y. Synthesis of a novel hydrazone derivative and biophysical studies of its interactions with bovine serum albumin by spectroscopic, electrochemical, and molecular docking methods. J. Phys. Chem. B. 2010, 114, 14842–14853.  doi: 10.1021/jp105766n

    19. [19]

      Siemens: SMART and SAINT. Area detector control and integration software. Siemens analytical X-ray systems inc.; Madison, Wisconsin, USA: 1996.

    20. [20]

      Sheldrick, G. M. SADABS, Program for Empirical Absorption Correction of Area Detector Data. University of Göttingen; Germany 1996.

    21. [21]

      Sheldrick, G. M. SHELXS-97, Program for the Solution of Crystal Structures. University of Göttingen, Germany 1997.

    22. [22]

      Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structures. University of Göttingen, Germany 1997.

    23. [23]

      Merril, C. R.; Goldman, D. S.; Sedman, S. A.; Ebert, M. H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science 1981, 211, 1437–1438.  doi: 10.1126/science.6162199

    24. [24]

      Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 2010, 30, 2785–2791.

    25. [25]

      Dassault Systèmes BIOVIA, Discovery studio client, 4.5. 0, San Diego: Dassault Systèmes 2015.

    26. [26]

      Ainscough, E. W.; Brodie, A. M.; Dobbs, A. J.; Ranford, J. D.; Waters, J. M. Antitumour copper(Ⅱ) salicylaldehyde benzoylhydrazone (H2sb) complexes: physicochemical properties and the single-crystal X-ray structures of [{Cu(H2sb)(CCl3CO2)2}2] and [{Cu(Hsb)(ClO4)(C2H5OH)2]. Inorg. Chim. Acta 1998, 267, 27–38.  doi: 10.1016/S0020-1693(97)05548-5

    27. [27]

      Singh, P.; Singh, A. K.; Singh, V. P. Synthesis, structural and corrosion inhibition properties of some transition metal(Ⅱ) complexes with o-hydroxyacetophenone-2-thiophenoyl hydrazone. Polyhedron 2013, 65, 73–81.  doi: 10.1016/j.poly.2013.08.008

    28. [28]

      Zhang, X. H.; Chen, S.; Min, Y. Q.; Qi, G. R. Synthesis of novel bisphenol containing phthalazinone and azomethine moieties and thermal properties of cured diamine/bisphenol/DGEBA polymers. Polymer 2006, 47, 1785–1795.  doi: 10.1016/j.polymer.2006.01.075

    29. [29]

      Bravo-Gómez, M. E.; Campero-Peredo, C.; García-Conde, D.; Mosqueira-Santillán, M. J.; Serment-Guerrero, J.; Ruiz-Azuara, L. DNA-binding mode of antitumoral copper compounds (Casiopeinas®;) and analysis of its biological meaning. Polyhedron 2015, 102, 530–538.  doi: 10.1016/j.poly.2015.10.034

    30. [30]

      Mistri, S.; Puschmann, H.; Manna, S. C. DNA/protein binding, cytotoxicity and catecholase activity studies of a piperazinyl moiety ligand based nickel(Ⅱ) complex. Polyhedron 2016, 115, 155–163.  doi: 10.1016/j.poly.2016.05.003

    31. [31]

      Liu, K.; Yan, H.; Chang, G. L.; Li, Z.; Niu, M. J.; Hong, M. Organotin(Ⅳ) complexes derived from hydrazone Schiff base: synthesis, crystal structure, in vitro cytotoxicity and DNA/BSA interactions. Inorg. Chim. Acta 2017, 464, 137–146.  doi: 10.1016/j.ica.2017.05.017

    32. [32]

      Thomas, R. K.; Sukumaran, S.; Sudarsanakumar, C. Photobehaviour and in vitro binding strategy of natural drug, chlorogenic acid with DNA: a case of groove binding. J. Mol. Struct. 2019, 1178, 62–72.  doi: 10.1016/j.molstruc.2018.10.019

    33. [33]

      Li, P.; Niu, M. J.; Hong, M.; Cheng, S.; Dou, J. Effect of structure and composition of nickel(Ⅱ) complexes with salicylidene Schiff base ligands on their DNA/protein interaction and cytotoxicity. J. Inorg. Biochem. 2014, 137, 101–108.  doi: 10.1016/j.jinorgbio.2014.04.005

    34. [34]

      Kniep, B.; Huenig, T. R.; Fitch, F. W.; Heuer, J.; Koelsch, E.; Meuhlradt, P. F. Neutral glycosphingolipids of murine myeloma cells and helper, cytolytic, and suppressor T lymphocytes. Biochem. 1983, 22, 251–255.  doi: 10.1021/bi00271a003

    35. [35]

      Bi, S.; Zhou, H.; Wu, J.; Sun, X. Y. Micronomicin/tobramycin binding with DNA: fluorescence studies using of ethidium bromide as a probe and molecular docking analysis. J. Biomol. Struct. Dyn. 2018, 1–13.

    36. [36]

      Husain, M. A.; Ishqi, H. M.; Sarwar, T.; Rehman, S. U.; Tabish, M. Interaction of indomethacin with calf thymus DNA: a multi-spectroscopic, thermodynamic and molecular modeling approach. Medchemcomm 2017, 8, 1283–1296.  doi: 10.1039/C7MD00094D

    37. [37]

      Gaur, R.; Khan, R. A.; Tabassum, S.; Shah, P.; Siddiqi, M. I.; Mishra, L. Interaction of a ruthenium(Ⅱ)-chalcone complex with double stranded DNA: spectroscopic, molecular docking and nuclease properties. J. Photoch. Photobio. A 2011, 220, 145–152.  doi: 10.1016/j.jphotochem.2011.04.005

    38. [38]

      Benyamini, H.; Shulmanpeleg, A.; Wolfson, H. J.; Belgorodsky, B.; Fadeev, L.; Gozin, M. Interaction of C60-fullerene and carboxyfullerene with proteins: docking and binding site alignment. Bioconjugate Chem. 2006, 17, 378–386.  doi: 10.1021/bc050299g

    39. [39]

      Wei, Q.; Dong, J.; Zhao, P.; Li, M.; Cheng, F.; Kong, J.; Li, L. DNA binding, BSA interaction and SOD activity of two new nickel(Ⅱ) complexes with glutamine Schiff base ligands. J. Photoch. Photobio. B 2016, 161, 355–367.  doi: 10.1016/j.jphotobiol.2016.03.053

    40. [40]

      Sasmal, M.; Bhowmick, R.; Islam, A. S. M.; Bhuiya, S.; Das, S.; Ali, M. Domain-specific association of a phenanthrene-pyrene-based synthetic fluorescent probe with bovine serum albumin: spectroscopic and molecular docking analysis. ACS Omega 2018, 3, 6293–6304.  doi: 10.1021/acsomega.8b00186

    41. [41]

      Gensch, T.; Hendriks, J.; Hellingwerf, K. J. Tryptophan fluorescence monitors structural changes accompanying signaling state formation in the photocycle of photoactive yellow protein. Photochem. Photobiol. Sci. 2004, 3, 531–536.  doi: 10.1039/b401600a

    42. [42]

      Klajnert, B.; Stanisławska, L.; Bryszewska, M.; Pałecz, B. Interactions between PAMAM dendrimers and bovine serum albumin. Biochim. Biophys. Acta 2003, 1648, 115–126.  doi: 10.1016/S1570-9639(03)00117-1

    43. [43]

      Zhang, Y. Z.; Zhou, B.; Liu, Y. X.; Zhou, C. X.; Ding, X. L.; Liu, Y. Fluorescence study on the interaction of bovine serum albumin with P-aminoazobenzene. J. Fluoresc. 2008, 18, 109–118.  doi: 10.1007/s10895-007-0247-4

    44. [44]

      Sahoo, D.; Bhattacharya, P.; Chakravorti, S. Reverse micelle induced flipping of binding site and efficiency of albumin Protein with an ionic styryl dye. J. Phys. Chem. B 2010, 114, 10442–10450.  doi: 10.1021/jp102937y

    45. [45]

      Lu, Y. X.; Shi, T.; Wang, Y.; Yang, H. Y.; Yan, X. H.; Luo, X. M.; Jiang, H. L.; Zhu, W. L. Halogen bonding—a novel interaction for rational drug design? J. Med. Chem. 2009, 52, 2854–2862.  doi: 10.1021/jm9000133

  • 加载中
    1. [1]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    2. [2]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    3. [3]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    4. [4]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    5. [5]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    6. [6]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    7. [7]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    8. [8]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    9. [9]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    10. [10]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    11. [11]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    12. [12]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    13. [13]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    14. [14]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    17. [17]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    18. [18]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    19. [19]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    20. [20]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

Metrics
  • PDF Downloads(1)
  • Abstract views(247)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return