Citation: Shou-Ying LI, Wei-Min ZHAO, Yong WANG. The First-principles Study of Hydrogen Adsorption and Diffusion on the Biaxial Strained Fe(110) Surface[J]. Chinese Journal of Structural Chemistry, ;2020, 39(3): 443-451. doi: 10.14102/j.cnki.0254-5861.2011-2499 shu

The First-principles Study of Hydrogen Adsorption and Diffusion on the Biaxial Strained Fe(110) Surface

  • Corresponding author: Wei-Min ZHAO, zhaowm@upc.edu.cn
  • Received Date: 14 June 2019
    Accepted Date: 12 November 2019

    Fund Project: the Natural Science Foundation of Shandong Province ZR2017MEE005

Figures(7)

  • Hydrogen is known to play a negative role in mechanical properties of steel due to hydrogen embrittlement. Surface strain modifies the surface reactivity. In this paper, we employed spin-polarized periodic density functional to study the atomic H adsorption and diffusion on the biaxial strained Fe(110) surface. The result shows that the adsorption of H at the Tf site is the most stable on compressive surface and tensile surface. And H atom on the top site relaxes to Tf site on the strained surface. The adsorbed hydrogen atom at all calculated adsorption sites relaxes towards the surface due to the tensile strain. Lattice compression makes the bonding strength weaker between H atom and the surface. The analysis of the partial density of states shows that H 1s orbital hybridizes with the Fe 4s orbital. The result of charge density difference shows electrons are transferred from Fe to H atom. Compressive strain reduces the transferred electrons and decreases the Mulliken electrons of Fe 4s orbital, which weaken the bonding interaction between H and Fe atoms. H atom diffuses into subsurface through a distorted tetrahedron. Surface strain does not change diffusion path but affects the diffusion barrier energy. Tetrahedron gap volume in the transition state of compressive system decreases to increase the diffusion barrier. This suggests compressive strain impedes H penetrating into the Fe subsurface. The present results indicate that it is a way to control adsorption and diffusion of hydrogen on the Fe surface by surface strain.
  • 加载中
    1. [1]

      Seyitoglu, S. S.; Dincer, I.; Kilicarslan, A. Energy and energy analyses of hydrogen production by coal gasification. Int. J. Hydrogen Energy 2017, 42, 2592−2600.  doi: 10.1016/j.ijhydene.2016.08.228

    2. [2]

      Nanninga, N. E.; Slifka, A.; Levy, Y. A review of fatigue crack growth for pipeline steels exposed to hydrogen. J. Res. Nat. Inst. Stand. Technol. 2010, 115, 437−439.  doi: 10.6028/jres.115.030

    3. [3]

      Dodds, P. E.; Demoullin, S. Conversion of the UK gas system to transport hydrogen. Int. J. Hydrogen. Energy 2013, 38, 7189−7200.  doi: 10.1016/j.ijhydene.2013.03.070

    4. [4]

      Briottet, L.; Batisse, R.; Dinechin, G. D. Recommendations on X80 steel for the design of hydrogen gas transmission pipelines. Int. J. Hydrogen Energy 2012, 37, 9423−9430.  doi: 10.1016/j.ijhydene.2012.02.009

    5. [5]

      Gsell, M.; Jakob, P.; Menzel, D. Effect of substrate strain on adsorption. Science 1998, 5364, 717−720.  doi: 10.3321/j.issn:1003-8728.1998.05.010

    6. [6]

      Jakob, P.; Gsell, M.; Menzel, D. Interactions of adsorbates with locally strained substrate lattices. Chin. J. Chem. Phys. 2001, 114, 10075−10085.  doi: 10.1063/1.1369161

    7. [7]

      Xie, W.; Peng, L.; Peng, D. Processes of H2 adsorption on Fe(110) surface a density functional theory study. Appl. Surf. Sci. 2014, 296, 47−52.  doi: 10.1016/j.apsusc.2014.01.028

    8. [8]

      Nanninga, N. E.; Levy, Y. S.; Drexler, E. S. Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments. Corros. Sci. 2012, 59, 1−9.  doi: 10.1016/j.corsci.2012.01.028

    9. [9]

      Huo, C. F.; Li, Y. W.; Wang, J. G. Surface structure and energetics of hydrogen adsorption on the Fe(111) surface. J. Phys. Chem. B 2005, 109, 14160−14167.  doi: 10.1021/jp051907s

    10. [10]

      Amaya, R. S.; Linares, D. H.; Duarte, H. A. Effect of hydrogen in adsorption and direct dissociation of CO on Fe(100) surface a DFT study. J. Anal. Chem. 2015, 6, 38-46.  doi: 10.4236/ajac.2015.61004

    11. [11]

      Juan, A.; Hoffmann, R. Hydrogen on the Fe(110) surface and near bulk bcc Fe vacancies: a comparative bonding study. Surf. Sci. 1999, 421, 1−16.  doi: 10.1016/S0039-6028(98)00780-8

    12. [12]

      Kunisada, Y.; Sakaguchi, N. Effects of hydrogen atoms on vacancy formation at fcc Fe(111) Surfaces. J. Jap. Ins. Met. A 2015, 79, 447−451.  doi: 10.2320/jinstmet.JAW201508

    13. [13]

      Wang, T.; Tian, X.; Yang, Y. Co-adsorption and mutual interaction of nCO + mH2 on the Fe(110) and Fe(111) surfaces. Catal. Today 2015, 261, 82−92.

    14. [14]

      Jiang, D. E.; Carter, E. A. Adsorption and diffusion energetics of hydrogen atoms on Fe(110) from first principles. Surf. Sci. 2003, 547, 85−98.  doi: 10.1016/j.susc.2003.10.007

    15. [15]

      Chohan, U. K.; Jimenez, M. E.; Koehler, S. P. K. Surface atomic relaxation and magnetism on hydrogen-adsorbed Fe(110) surfaces from first principles. Appl. Surf. Sci. 2016, 387, 385−392.  doi: 10.1016/j.apsusc.2016.06.027

    16. [16]

      Sanchez, J.; Fullea, F.; Andrade, M. C. Ab-initio molecular dynamics simulation of hydrogen diffusion in α-iron. Phys. Rev. B 2010, 81, 132102−132111.  doi: 10.1103/PhysRevB.81.132102

    17. [17]

      Sorescu, D. C. First principles calculations of the adsorption and diffusion of hydrogen on Fe(100) surface and in the bulk. Catal. Today 2005, 105, 44−65.  doi: 10.1016/j.cattod.2005.04.010

    18. [18]

      Chohan, U. K.; Koehler, S. P. K.; Jimenez, M. E. Diffusion of hydrogen into and through γ-iron by density functional theory. Surf. Sci. 2018, 672, 56−61.

    19. [19]

      Wen, X.; Bai, P.; Han, Z. Effect of vacancy on adsorption/dissociation and diffusion of H2S on Fe(110) surfaces a density functional theory study. Appl. Surf. Sci. 2019, 465, 833−845.  doi: 10.1016/j.apsusc.2018.09.220

    20. [20]

      Li, X. Hydrogen diffusion in aFe under an applied 3-axis strain a quantum manifestation. Int. J. Hydrogen Energy 2015, 40, 10340−10345.  doi: 10.1016/j.ijhydene.2015.06.089

    21. [21]

      Li, S. H.; Wang, Y.; Zhao, W. M. Influence of single axis strain on site occupation and diffusion of hydrogen atom in αFe. Acta. Phys. Sin. 2017, 66, 193−198.

    22. [22]

      Goikoetxea, I.; Juaristi, J.; Muiño, R. D. Surface strain improves molecular adsorption but hampers dissociation for N2 on the Fe/W(110) surface. Phys. Rev. Lett. 2014, 113, 066103−066108.  doi: 10.1103/PhysRevLett.113.066103

    23. [23]

      Jeon, J.; Yu, B. D.; Hyun, S. Surface strain effects on the adsorption and the diffusion of Au atoms on MgO(001) surfaces. J. Kor. Phy. Soc. 2016, 69, 1776−1780.  doi: 10.3938/jkps.69.1776

    24. [24]

      Yang, L.; Shu, D. J.; Li, S. C. Influence of strain on water adsorption and dissociation on rutile TiO2(110) surface. Phys. Chem. 2016, 18, 14833−14839.

    25. [25]

      Kuwabara, A.; Saito, Y.; Koyama, Y. First principles calculation of CO and H2 adsorption on strained Pt surface. Mater. Trans. Jim. 2008, 49, 608−616.

    26. [26]

      Xu, Y.; Mavrikakis, M. Adsorption and dissociation of O2 on Cu(111) thermochemistry reaction barrier and the effect of strain. Surf. Sci. 2001, 494, 131−144.  doi: 10.1016/S0039-6028(01)01464-9

    27. [27]

      Clark, S. J.; Segall, M. D.; Pickard, C. J. First principles methods using CASTEP. Zei. Kri. 2005, 220, 567−570.

    28. [28]

      Zhang, F. C.; Li, C. F.; Wen, P.; Luo, Q.; Ran, Z. L. First principles investigation of interaction between interstitial hydrogen atom and Fe metal. Acta Phys. Sin. 2014, 63, 227101−227111  doi: 10.7498/aps.63.227101

    29. [29]

      Nichtl, P. W.; Gossmann, J.; Hammer, L. Adsorption of hydrogen on Fe(110) at cryogenic temperatures investigated by low energy electron diffraction. J. Vac. Sci. Tec. Vac. Sur. Fil. 1992, 10, 501−507.  doi: 10.1116/1.578179

    30. [30]

      Jiang, D. E.; Carter, E. A. Diffusion of interstitial hydrogen into and through bcc Fe from first principles. Phys. Rev. B 2004, 70, 064102−064106.  doi: 10.1103/PhysRevB.70.064102

    31. [31]

      Jiang, D. E.; Carter, E. A. Carbon atom adsorption on and diffusion into Fe(110) and Fe(100) from first principles. Phys. Rev. B 2005, 71, 045402−045409.

    32. [32]

      Cremaschi, P.; Yang, H.; Whitten, J. L. Ab initio chemisorption studies of H on Fe(110). Sur. Sci. 1995, 330, 255−264.  doi: 10.1016/0039-6028(95)00244-8

    33. [33]

      Moritz, W.; Imbihl, R.; Behm, R. J. Adsorption geometry of hydrogen on Fe(110). J. Chem. Phys. 1985, 83, 1959−1968.  doi: 10.1063/1.449334

    34. [34]

      Shen, X.; Chen, J.; Sun, Y. M. Hydrogen diffusion on Fe surface and into subsurface from first principles. Surf. Sci. 2016, 654, 48−55.  doi: 10.1016/j.susc.2016.08.005

    35. [35]

      Lei, H.; Wang, C.; Yao, Y. Strain effect on the adsorption, diffusion, and molecular dissociation of hydrogen on Mg(0001) surface. J. Chem. Phys. 2013, 139, 224702−224709.  doi: 10.1063/1.4839595

  • 加载中
    1. [1]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    2. [2]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    3. [3]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    4. [4]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    5. [5]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    6. [6]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    7. [7]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    8. [8]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    9. [9]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    10. [10]

      Zikang HuHengjie ZhangZhengqiu LiTianbao ZhaoZhipeng GuQijuan YuanBaoshu Chen . Multifunctional photothermal hydrogels: Design principles, various functions, and promising biological applications. Chinese Chemical Letters, 2024, 35(10): 109527-. doi: 10.1016/j.cclet.2024.109527

    11. [11]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    12. [12]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    13. [13]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    14. [14]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    15. [15]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    16. [16]

      Chuan LiYangyang HanYanan ZhaiKe LiXingzhong LiuZhuan ZhangCai JiaYongsheng Che . Phomaketals A and B, pentacyclic meroterpenoids from a eupC overexpressed mutant strain of Phoma sp.. Chinese Chemical Letters, 2024, 35(7): 109019-. doi: 10.1016/j.cclet.2023.109019

    17. [17]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    18. [18]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    19. [19]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    20. [20]

      Yukai TongZhijun WuBo ZhouMin HuAnpei Ye . Surface tension of single suspended aerosol microdroplets. Chinese Chemical Letters, 2024, 35(4): 109062-. doi: 10.1016/j.cclet.2023.109062

Metrics
  • PDF Downloads(11)
  • Abstract views(236)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return