Diverse Hf-Q Chains Existing in the Ternary Eu-Hf-Q (Q = S, Se) System
- Corresponding author: Sheng-Ping GUO, spguo@yzu.edu.cn
Citation:
Qian-Ting XU, Man-Man CHEN, Shen-Jing JI, Sheng-Ping GUO. Diverse Hf-Q Chains Existing in the Ternary Eu-Hf-Q (Q = S, Se) System[J]. Chinese Journal of Structural Chemistry,
;2020, 39(3): 437-442.
doi:
10.14102/j.cnki.0254-5861.2011-2474
Rare-earth chalcogenides (RECh) have been investigated extensively in the past years in view of their rich structures and versatile application potentials[1]. Recently, more and more RECh compounds are updated to this interesting family, including BaRE2In2Q7 (RE = La-Nd; Q = S, Se)[2], RE4S4Te3 (RE = Gd, Ho, Er, Tm)[3], Ba3La4Ga2Sb2S15[4], Yb6Ga4S15[5], MgRE6Si2S14[6], BaRESn2Q6 (RE = Ce, Pr, Nd; Q = S; RE = Ce, Q = Se)[7], RE3S3BO3 (RE = Gd, Sm)[8, 9] and RE3GaS6 (RE = Dy, Y)[10]. Apart from their structures, these RECh compounds demonstrate attractive photocatalytic, second-order nonlinear optic (NLO), magnetic, photoluminescent, and photocurrent responsive activities.
Pushed by these progresses, it still makes sense to explore more new RECh compounds. On the other hand, divalent rare-earth metal Eu exhibits similar coordination style and ionic radius with alkali-earth (AE) metals, and AE chalcogenides behave great potentials as NLO[11, 12], photovoltaic[13], and thermoelectric materials[14]. Combining these considerations together, it is interesting to obtain new Eu-based chalcogenides (EuCh). Following our recent achievements on EuCh compounds, viz. EuZnGeS4[15], α-EuZrS3[16], Eu0.81Ga2Te4[17], Eu9MgS2B20O41[18], Cu2EuMQ4 (M = Si, Ge; Q = S, Se)[19], and Eu8In17.33S34[20], two new ternary RECh compounds were synthesized by us recently, namely, EuHfSe3 (1) and Eu5Hf3S12 (2). Here, we report their crystal structures, especially the diverse Hf-Q chains and the electronic structure of 1.
All starting materials were used as received without further purification. Single crystals of 1 and 2 were obtained by solid-state reactions with KI (99 %) as flux. The starting materials are Eu2O3 (99.99%), S or Se (99.999%), HfO2 (99.9%), and B powder (99%) with the stoichiometric ratios. A standard synthetic process is like this. Each sample has a total mass of 500 and 400 mg KI additional. The mixture of starting materials was ground into fine powder in an agate mortar and pressed into a pellet, followed by being loaded into a quartz tube. The tube was evacuated to be 1 × 10–4 torr and flame-sealed. The sample was placed into a muffle furnace, heated from room temperature to 573 K in 5 h and maintained for 5 h, followed by heating to 873 K in 5 h and maintained for 5 h, then heated to 1223 K in 5 h and maintained for 5 days, finally cooled down to 573 K in 5 days and powered off. The crystals of 1 and 2 stable in moisture and air were obtained, which was then washed using ethanol and hot water under ultrasonic wave.
Semiquantitative microscope element analysis on the as-prepared single crystals was performed on a field-emission scanning electron microscope (FESEM, Zeiss-Supra55) equipped with an energy dispersive X-ray spectroscope (EDS, Bruker, Quantax), which confirmed the presence of Eu, Hf, and S/Se with the approximate compositions of 1 and 2, respectively, and no other elements were detected. The exact compositions were established from the X-ray structure determinations.
The intensity data sets were collected on a Bruker D8 QUEST X-ray diffractometer with graphite-monochromated MoKα radiation (λ = 0.71073 Å). The structures were solved by direct methods and refined by full-matrix least-squares techniques on F2 with anisotropic thermal parameters for all atoms. All the calculations were performed with Siemens SHELXL-2015 package of crystallographic software[21]. The final refinement included anisotropic displacement parameters for all atoms and a secondary extinction correction. Compound 1 crystallizes in orthorhombic space group Pnma with Z = 4, a = 8.8767(9), b = 3.9333(4), c = 14.3988(16) Å, V = 502.73(9) Å3, Dc = 7.496 g/cm3, μ = 54.526 mm–1, S = 1.051, (Δ/σ)max = 0.091, (Δρ)max = 1.29, (Δρ)min = –1.32 e/Å3, the final R = 0.0195 and wR = 0.0334. Compound 2 crystallizes in hexagonal space group P
EuHfSe3 (1) | ||||
Bond | Dist. | Bond | Dist. | |
Eu(1)–Se(1) | 3.171(1) | Hf(1)–Se(1) | 2.723(1) | |
Eu(1)–Se(2)#5 | 3.373(1) | Hf(1)–Se(1)#1 | 2.696(1) | |
Eu(1)–Se(2)#6 | 3.206(1) | Hf(1)–Se(1)#2 | 2.696(1) | |
Eu(1)–Se(2)#7 | 3.206(1) | Hf(1)–Se(2) | 2.675(1) | |
Eu(1)–Se(3)#1 | 3.201(1) | Hf(1)–Se(2)#3 | 2.675(1) | |
Eu(1)–Se(3)#2 | 3.201(1) | Hf(1)–Se(3) | 2.561(1) | |
Eu(1)–Se(3)#8 | 3.161(1) | |||
Eu5Hf3S12 (2) | ||||
Bond | Dist. | Bond | Dist. | |
Eu(1)–S(1) | 2.846(4) | Eu(2)–S(1)#11 | 3.029(4) | |
Eu(1)–S(1)#3 | 2.846(4) | Eu(2)–S(1)#12 | 3.029(4) | |
Eu(1)–S(1)#5 | 2.846(4) | Eu(2)–S(2) | 3.380(1) | |
Eu(1)–S(1)#7 | 2.846(4) | Eu(2)–S(2)#8 | 3.380(1) | |
Eu(1)–S(2)#8 | 2.917(8) | Eu(2)–S(2)#12 | 3.380(1) | |
Eu(1)–S(3) | 2.871(2) | Hf(1)–S(1) | 2.529(5) | |
Eu(1)–S(3)#9 | 2.871(2) | Hf(1)–S(1)#1 | 2.529(5) | |
Eu(2)–S(1) | 3.029(4) | Hf(1)–S(2) | 2.543(5) | |
Eu(2)–S(1)#5 | 3.029(4) | Hf(1)–S(2)#2 | 2.543(5) | |
Eu(2)–S(1)#8 | 3.029(4) | Hf(1)–S(3) | 2.638(6) | |
Eu(2)–S(1)#10 | 3.029(4) | Hf(1)–S(3)#2 | 2.638(6) | |
Symmetry transformations used to generate the equivalent atoms: #1: –x, 1–y, 1–z; #2: –x, –y, 1–z; #3: x, 1+y, z; #4: x, –1+y, z;#5: 1/2–x, –y, 1/2+z; #6: –1/2+x, y, 3/2–z; #7: –1/2+x, 1+y, 3/2–z; #8: 1/2–x, 1–y, 1/2+z for 1. #1: 2–x, 1–x+y, 1–z;#2: x, y, 1+z; #3: –y+x, –y, –z; #4: –y+x, –y, z; #5: x, y, –1+z; #6: x, y, –z; #7: –y+x, –y, 1–z; #8: 1+y–x, 1–x, z;#9: 1–y, –1+x–y, z; #10: 1+y–x, 1–x, –1+z; #11: 1–y, x–y, –1+z; #12: 1–y, x–y, z for 2 |
Since compound 2 contains trivalent Eu3+ ions, the efforts to calculate their electronic structures failed. Therefore, only calculation on 1 was performed. The calculation model was built directly from its single-crystal diffraction data, and no further geometry optimization was performed. The electronic structure calculation including band structure and density of states based on density functional theory (DFT) was performed using the CASTEP code in software Material Studio[22]. The generalized gradient approximation (GGA) was chosen as the exchange-correlation functional and a plane wave basis with the projector-augmented wave (PAW) potentials used. The plane-wave cutoff energy of 480 eV and the threshold of 10–5 eV were set for the self-consistent-field convergence of the total electronic energy. The valence electronic configurations for Eu, Hf, and Se were 4f76s2, 5d26s2 and 4s24p4, respectively. The numerical integration of the Brillouin zone was performed using 3 × 6 × 2 Monkhorst-Pack k-point meshes and the Fermi level (Ef = 0 eV) was selected as the reference[23].
Compound 1 is a new member belonging to the MⅡ-MⅣ-Q3 (MⅡ = divalent metal Ca, Sr, Ba, Pb, Sn, Eu, Yb; MⅣ = Ti, Zr, Hf; Q = S, Se) family with the perovskite structure, and it is also the first MⅡ-Hf-Se3 compound. It crystallizes in orthorhombic space group Pnma, isostructural with the previously studied α-EuZrS3[16]. There are one Eu, one Hf, and three Se atoms in the crystallographically independent unit. The 3D structure is constructed by EuSe8 bicapped trigonal prisms and HfSe6 octahedra (Fig. 1). The latter are linked together via sharing Se edges with four neighbouring HfSe6 units to form ladder-like {[HfSe3]2–}∞ chains along the b-axis. This chain also can be viewed as built by pseudo-cubane Hf3Se4 units, and each such unit contains three Se(1) and one Se(2) atoms. The {[HfSe3]2–}∞ chain can be recognized as a double-chain structure unit, too, comprised of two parallel {[HfSe4]4–}∞ chains, which are linked together via Eu–Se(1) bonds with the longest distance of 2.723(1) Å.
Compound 2 is a new selenide crystallized in the hexagonal space group P
It is interesting that both the two compounds contain Hf–Q constructed chains, namely, linear single one in 2 and linear ladder-like or double-one in 1, though the coordination geometries of Hf are the same, viz. octahedra in 1 and 2. The oxidation states of Eu ions can be easily assigned to Eu2+ in 1, and Eu2+ and Eu3+ with the molar ratio of 3:2 coexisted in 2 to make the whole molecules electro-neutral. To date, only Eu0.4ZrSe2[25], LaTi1.667Se4.334[26] and La1.2Ti2Se5.2[26] can be found for the RE-MⅣ-Q3 (RE = rare-earth metal; MⅣ = Ti, Zr, Hf; Q = S, Se) system from the Inorganic Crystal Structure Database (ICSD) apart from the structures studied here. However, there should be more Eu, MⅣ-based chalcogenides existing based on the similarity of Eu2+ and AE2+ ions. As far as we know, except for the AE-MⅣ-Q3 system, there are Ba2Zr3S7, Ba2ZrS4, Ba3Zr2S7, Ba4Zr3S10, Ba5Hf4S13, Ba6Hf5S16, Ba15Zr14Se42, and Sr21Ti19Se57 found in the ICSD. Therefore, there is a great opportunity to obtain more ternary Eu-MⅣ-Q compounds.
The yields of 1 and 2 are really low, even though hard efforts have been made to optimize the synthetic method, which impedes our interest to explore their potential physical properties, such as magnetic and photoluminescent data. On the other hand, hitherto, it is still a great challenge to calculate the electronic structures of compounds containing RE metal ions. Usually, RE metal ions with f0, f7, or f14 electronic configuration can be calculated. Therefore, only the electronic structure of 1 is computed.
To investigate the electronic structure of 1, the band structure and density of states (DOS) computations based on the DFT theory were performed using Materials Studio software. The calculated band structure along high symmetry points of the first Brillouin zone is shown in Fig. 3a, from which it can be seen that both the bottom of conduction band and the top of valence band locate at the G point, indicating that 1 has a direct band gap of 0.226 eV. This value is possibly lower than the experimental one in view of the limitation of DFT. The valence orbitals are mainly contributed by Se-4p and Eu-5p ones (Fig. 3b).
Mitchell, K.; Ibers, J. A. Rare-earth transition-metal chalcogenides. Chem. Rev. 2002, 102, 1929–1952.
doi: 10.1021/cr010319h
Yin, W. L.; Iyer, A. K.; Lin, X. S.; Li, C.; Yao, J. Y.; Mar, A. Quaternary chalcogenides BaRE2In2Ch7 (RE = La–Nd; Ch = S, Se) containing InCh5 trigonal bipyramids. Dalton Trans. 2016, 45, 12329–12337.
doi: 10.1039/C6DT02385A
Chi, Y.; Rong, L. Z.; Suen, N. T.; Xue, H. G.; Guo, S. P. Crystal chemistry and photocatalytic properties of RE4S4Te3 (RE = Gd, Ho, Er, Tm), experimental and theoretical investigations. Inorg. Chem. 2018, 57, 5343–5351.
doi: 10.1021/acs.inorgchem.8b00344
Duan, R. H.; Shen, J. N.; Lin, C. S.; Liu, P. F.; Lin, H.; Huang-Fu, S. X.; Zhao, H. J.; Khan, M. A.; Chen, L. Syntheses, structures, and properties of sulfides constructed by SbS4 teeter-totter polyhedra: Ba3La4Ga2Sb2S15 and BaLa3GaSb2S10. Inorg. Chem. Front. 2017, 4, 123–130.
doi: 10.1039/C6QI00346J
Lin, H.; Shen, J. N.; Zhu, W. W.; Liu, Y.; Wu, X. T.; Zhu, Q. L.; Wu, L. M. Two new phases in the ternary RE–Ga–S systems with the unique interlinkage of GaS4 building units: synthesis, structure, and properties. Dalton Trans. 2017, 46, 13731–13738.
doi: 10.1039/C7DT02545A
Chi, Y.; Guo, S. P. Syntheses, crystal and electronic structure of a series of quaternary rare-earth sulfides MgRE6Si2S14 (RE = Y, Ce, Pr, Nd and Sm). J. Mol. Struct. 2017, 1127, 53–58.
doi: 10.1016/j.molstruc.2016.07.088
Feng, K.; Zhang, X.; Yin, W. L.; Shi, Y. G.; Yao, J. Y.; Wu, Y. C. New quaternary rare-earth chalcogenides BaLnSn2Q6 (Ln = Ce, Pr, Nd, Q = S; Ln = Ce, Q = Se): synthesis, structure, and magnetic properties. Inorg. Chem. 2014, 53, 2248–2253.
doi: 10.1021/ic402934m
Guo, S. P.; Chi, Y.; Xue, H. G. Sm3S3BO3: the first sulfide borate without S–O and B–S bonds. Inorg. Chem. 2015, 54, 11052–11054.
doi: 10.1021/acs.inorgchem.5b01930
Chi, Y.; Guo, S. P.; Kong, H. J.; Xue, H. G. Crystal and electronic structures, optical and magnetic properties of novel rare-earth sulfide borates RE3S3BO3 (RE = Sm, Gd). New J. Chem. 2016, 40, 6720–6727.
doi: 10.1039/C6NJ00549G
Zhang, M. J.; Li, B. X.; Liu, B. W.; Fan, Y. H.; Li, X. G.; Zeng, H. Y.; Guo, G. C. Ln3GaS6 (Ln = Dy, Y): new infrared nonlinear optical materials with high laser induced damage thresholds. Dalton Trans. 2013, 42, 14223–14229.
doi: 10.1039/c3dt51139a
Guo, S. P.; Chi, Y.; Guo, G. C. Recent achievements on middle and far-infrared second-order nonlinear optical materials. Coord. Chem. Rev. 2017, 335, 44–57.
doi: 10.1016/j.ccr.2016.12.013
Pan, Y.; Guo, S. P.; Liu, B. W.; Xue, H. G.; Guo, G. C. Second-order nonlinear optical crystals with mixed-anions. Coord. Chem. Rev. 2018, 374, 464–496.
doi: 10.1016/j.ccr.2018.07.013
Chen, M. M.; Xue, H. G.; Guo, S. P. Multinary metal chalcogenides with tetrahedral structures for second-order nonlinear optical, photocatalytic, and photovoltaic applications. Coord. Chem. Rev. 2018, 368, 115–133.
doi: 10.1016/j.ccr.2018.04.014
Moroz, N. A.; Bauer, C.; Williams, L.; Olvera, A.; Casamento, J.; Page, A. A.; Bailey, T. P.; Weiland, A.; Stoyko, S. S.; Kioupakis, E.; Uher, C.; Aitken, J. A.; Poudeu, P. F. P. Insights on the synthesis, crystal and electronic structures, and optical and thermoelectric properties of Sr1–xSbxHfSe3 orthorhombic perovskite. Inorg. Chem. 2017, 57, 7402–7411.
Chi, Y.; Guo, S. P.; Xue, H. G. Band gap tuning from indirect EuGa2S4 to direct EuZnGeS4 semiconductor: syntheses, crystal and electronic structures, and optical properties. RSC Adv. 2017, 7, 5039–5045.
doi: 10.1039/C6RA25283D
Guo, S. P.; Chi, Y.; Zou, J. P.; Xue, H. G. Crystal and electronic structures, and photoluminescence and photocatalytic properties of α-EuZrS3. New J. Chem. 2016, 40, 10219–10226.
doi: 10.1039/C6NJ02106A
Guo, S. P.; Sun, Z. D. Eu1-xGa2Te4 (x ≈ 0.19) and EuY2Se4, experimental and theoretical investigations. Chin J. Struct. Chem. 2018, 37, 1243–1249.
Chi, Y.; Xu, J.; Xue, H. G.; Zhang, Y. P.; Chen, X. L.; Whangbo, M. H.; Guo, S. P.; Deng, S. Q. Triple-kagomé-layer slabs of mixed-valence rare-earth ions exhibiting quantum spin liquid behaviors: synthesis and characterization of Eu9MgS2B20O41. J. Am. Chem. Soc. 2019, 141, 9533–9536.
doi: 10.1021/jacs.9b04627
Sun, Z. D.; Chi, Y.; Guo, S. P. Cu2EuMQ4 (M = Si, Ge; Q = S, Se): syntheses, structure study and physical properties determination. J. Solid State Chem. 2019, 269, 225–232.
doi: 10.1016/j.jssc.2018.09.030
Chi, Y.; Jiang, T. F.; Xue, H. G.; Guo, S. P. Transition metal free monoclinic Eu8In17.33S34 and its anisotropic photoelectronic responses. Inorg. Chem. 2019, 58, 3574–3577.
doi: 10.1021/acs.inorgchem.8b03256
Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8.
doi: 10.1107/S2053229614024218
Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. : Condens. Matter. 2012, 14, 2717–2744.
Guo, S. P.; Guo, G. C.; Wang, M. S.; Zou, J. P.; Xu, G.; Wang, G. J.; Long, X. F.; Huang, J. S. A series of new infrared NLO semiconductors, ZnY6Si2S14, AlxDy3(SiyAl1-y)S7, and Al0.33Sm3SiS7. Inorg. Chem. 2009, 48, 7059–7065.
doi: 10.1021/ic802443n
Jakubcova, P.; Schappacher, F. M.; Pöttgen, R.; Johrendt, D. Structure and properties of mixed-valence compound Eu5Zr3S12. Z. Anorg. Allg. Chem. 2009, 635, 759–763.
doi: 10.1002/zaac.200900075
Gourdon, O.; Cario, L.; Petricek, V.; Perez-Mato, J. M.; Evain, M. Synthesis, structure determination, and twinning of two new composite compounds in the hexagonal perovskite-like sulfide family: Eu8/7TiS3 and Sr8/7TiS3. Z. Kristallogr. 2001, 216, 541–555.
Ren, Y. Crystal structure determination of the TiSe2-based misfit layer compound (LaSe)1.20(TiSe2)2. Z. Kristallogr. 1997, 212, 586–592.
Mitchell, K.; Ibers, J. A. Rare-earth transition-metal chalcogenides. Chem. Rev. 2002, 102, 1929–1952.
doi: 10.1021/cr010319h
Yin, W. L.; Iyer, A. K.; Lin, X. S.; Li, C.; Yao, J. Y.; Mar, A. Quaternary chalcogenides BaRE2In2Ch7 (RE = La–Nd; Ch = S, Se) containing InCh5 trigonal bipyramids. Dalton Trans. 2016, 45, 12329–12337.
doi: 10.1039/C6DT02385A
Chi, Y.; Rong, L. Z.; Suen, N. T.; Xue, H. G.; Guo, S. P. Crystal chemistry and photocatalytic properties of RE4S4Te3 (RE = Gd, Ho, Er, Tm), experimental and theoretical investigations. Inorg. Chem. 2018, 57, 5343–5351.
doi: 10.1021/acs.inorgchem.8b00344
Duan, R. H.; Shen, J. N.; Lin, C. S.; Liu, P. F.; Lin, H.; Huang-Fu, S. X.; Zhao, H. J.; Khan, M. A.; Chen, L. Syntheses, structures, and properties of sulfides constructed by SbS4 teeter-totter polyhedra: Ba3La4Ga2Sb2S15 and BaLa3GaSb2S10. Inorg. Chem. Front. 2017, 4, 123–130.
doi: 10.1039/C6QI00346J
Lin, H.; Shen, J. N.; Zhu, W. W.; Liu, Y.; Wu, X. T.; Zhu, Q. L.; Wu, L. M. Two new phases in the ternary RE–Ga–S systems with the unique interlinkage of GaS4 building units: synthesis, structure, and properties. Dalton Trans. 2017, 46, 13731–13738.
doi: 10.1039/C7DT02545A
Chi, Y.; Guo, S. P. Syntheses, crystal and electronic structure of a series of quaternary rare-earth sulfides MgRE6Si2S14 (RE = Y, Ce, Pr, Nd and Sm). J. Mol. Struct. 2017, 1127, 53–58.
doi: 10.1016/j.molstruc.2016.07.088
Feng, K.; Zhang, X.; Yin, W. L.; Shi, Y. G.; Yao, J. Y.; Wu, Y. C. New quaternary rare-earth chalcogenides BaLnSn2Q6 (Ln = Ce, Pr, Nd, Q = S; Ln = Ce, Q = Se): synthesis, structure, and magnetic properties. Inorg. Chem. 2014, 53, 2248–2253.
doi: 10.1021/ic402934m
Guo, S. P.; Chi, Y.; Xue, H. G. Sm3S3BO3: the first sulfide borate without S–O and B–S bonds. Inorg. Chem. 2015, 54, 11052–11054.
doi: 10.1021/acs.inorgchem.5b01930
Chi, Y.; Guo, S. P.; Kong, H. J.; Xue, H. G. Crystal and electronic structures, optical and magnetic properties of novel rare-earth sulfide borates RE3S3BO3 (RE = Sm, Gd). New J. Chem. 2016, 40, 6720–6727.
doi: 10.1039/C6NJ00549G
Zhang, M. J.; Li, B. X.; Liu, B. W.; Fan, Y. H.; Li, X. G.; Zeng, H. Y.; Guo, G. C. Ln3GaS6 (Ln = Dy, Y): new infrared nonlinear optical materials with high laser induced damage thresholds. Dalton Trans. 2013, 42, 14223–14229.
doi: 10.1039/c3dt51139a
Guo, S. P.; Chi, Y.; Guo, G. C. Recent achievements on middle and far-infrared second-order nonlinear optical materials. Coord. Chem. Rev. 2017, 335, 44–57.
doi: 10.1016/j.ccr.2016.12.013
Pan, Y.; Guo, S. P.; Liu, B. W.; Xue, H. G.; Guo, G. C. Second-order nonlinear optical crystals with mixed-anions. Coord. Chem. Rev. 2018, 374, 464–496.
doi: 10.1016/j.ccr.2018.07.013
Chen, M. M.; Xue, H. G.; Guo, S. P. Multinary metal chalcogenides with tetrahedral structures for second-order nonlinear optical, photocatalytic, and photovoltaic applications. Coord. Chem. Rev. 2018, 368, 115–133.
doi: 10.1016/j.ccr.2018.04.014
Moroz, N. A.; Bauer, C.; Williams, L.; Olvera, A.; Casamento, J.; Page, A. A.; Bailey, T. P.; Weiland, A.; Stoyko, S. S.; Kioupakis, E.; Uher, C.; Aitken, J. A.; Poudeu, P. F. P. Insights on the synthesis, crystal and electronic structures, and optical and thermoelectric properties of Sr1–xSbxHfSe3 orthorhombic perovskite. Inorg. Chem. 2017, 57, 7402–7411.
Chi, Y.; Guo, S. P.; Xue, H. G. Band gap tuning from indirect EuGa2S4 to direct EuZnGeS4 semiconductor: syntheses, crystal and electronic structures, and optical properties. RSC Adv. 2017, 7, 5039–5045.
doi: 10.1039/C6RA25283D
Guo, S. P.; Chi, Y.; Zou, J. P.; Xue, H. G. Crystal and electronic structures, and photoluminescence and photocatalytic properties of α-EuZrS3. New J. Chem. 2016, 40, 10219–10226.
doi: 10.1039/C6NJ02106A
Guo, S. P.; Sun, Z. D. Eu1-xGa2Te4 (x ≈ 0.19) and EuY2Se4, experimental and theoretical investigations. Chin J. Struct. Chem. 2018, 37, 1243–1249.
Chi, Y.; Xu, J.; Xue, H. G.; Zhang, Y. P.; Chen, X. L.; Whangbo, M. H.; Guo, S. P.; Deng, S. Q. Triple-kagomé-layer slabs of mixed-valence rare-earth ions exhibiting quantum spin liquid behaviors: synthesis and characterization of Eu9MgS2B20O41. J. Am. Chem. Soc. 2019, 141, 9533–9536.
doi: 10.1021/jacs.9b04627
Sun, Z. D.; Chi, Y.; Guo, S. P. Cu2EuMQ4 (M = Si, Ge; Q = S, Se): syntheses, structure study and physical properties determination. J. Solid State Chem. 2019, 269, 225–232.
doi: 10.1016/j.jssc.2018.09.030
Chi, Y.; Jiang, T. F.; Xue, H. G.; Guo, S. P. Transition metal free monoclinic Eu8In17.33S34 and its anisotropic photoelectronic responses. Inorg. Chem. 2019, 58, 3574–3577.
doi: 10.1021/acs.inorgchem.8b03256
Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8.
doi: 10.1107/S2053229614024218
Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. : Condens. Matter. 2012, 14, 2717–2744.
Guo, S. P.; Guo, G. C.; Wang, M. S.; Zou, J. P.; Xu, G.; Wang, G. J.; Long, X. F.; Huang, J. S. A series of new infrared NLO semiconductors, ZnY6Si2S14, AlxDy3(SiyAl1-y)S7, and Al0.33Sm3SiS7. Inorg. Chem. 2009, 48, 7059–7065.
doi: 10.1021/ic802443n
Jakubcova, P.; Schappacher, F. M.; Pöttgen, R.; Johrendt, D. Structure and properties of mixed-valence compound Eu5Zr3S12. Z. Anorg. Allg. Chem. 2009, 635, 759–763.
doi: 10.1002/zaac.200900075
Gourdon, O.; Cario, L.; Petricek, V.; Perez-Mato, J. M.; Evain, M. Synthesis, structure determination, and twinning of two new composite compounds in the hexagonal perovskite-like sulfide family: Eu8/7TiS3 and Sr8/7TiS3. Z. Kristallogr. 2001, 216, 541–555.
Ren, Y. Crystal structure determination of the TiSe2-based misfit layer compound (LaSe)1.20(TiSe2)2. Z. Kristallogr. 1997, 212, 586–592.
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Yao HUANG , Yingshu WU , Zhichun BAO , Yue HUANG , Shangfeng TANG , Ruixue LIU , Yancheng LIU , Hong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359
Lulu DONG , Jie LIU , Hua YANG , Yupei FU , Hongli LIU , Xiaoli CHEN , Huali CUI , Lin LIU , Jijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171
Xiumei LI , Yanju HUANG , Bo LIU , Yaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109
Chao LIU , Jiang WU , Zhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153
Xiaoling WANG , Hongwu ZHANG , Daofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
Jia JI , Zhaoyang GUO , Wenni LEI , Jiawei ZHENG , Haorong QIN , Jiahong YAN , Yinling HOU , Xiaoyan XIN , Wenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344
Lu LIU , Huijie WANG , Haitong WANG , Ying LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489
Ruikui YAN , Xiaoli CHEN , Miao CAI , Jing REN , Huali CUI , Hua YANG , Jijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301
Xiumei LI , Linlin LI , Bo LIU , Yaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273
Yan XU , Suzhi LI , Yan LI , Lushun FENG , Wentao SUN , Xinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226
Huan ZHANG , Jijiang WANG , Guang FAN , Long TANG , Erlin YUE , Chao BAI , Xiao WANG , Yuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291
Meirong HAN , Xiaoyang WEI , Sisi FENG , Yuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150
Shuyan ZHAO . Field-induced CoⅡ single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231
Yinling HOU , Jia JI , Hong YU , Xiaoyun BIAN , Xiaofen GUAN , Jing QIU , Shuyi REN , Ming FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Haodong Wang , Xiaoxu Lai , Chi Chen , Pei Shi , Houzhao Wan , Hao Wang , Xingguang Chen , Dan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473
Xiaofen GUAN , Yating LIU , Jia LI , Yiwen HU , Haiyuan DING , Yuanjing SHI , Zhiqiang WANG , Wenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122
Hongdao LI , Shengjian ZHANG , Hongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411