Processing math: 100%

Citation: Qian-Ting XU, Man-Man CHEN, Shen-Jing JI, Sheng-Ping GUO. Diverse Hf-Q Chains Existing in the Ternary Eu-Hf-Q (Q = S, Se) System[J]. Chinese Journal of Structural Chemistry, ;2020, 39(3): 437-442. doi: 10.14102/j.cnki.0254-5861.2011-2474 shu

Diverse Hf-Q Chains Existing in the Ternary Eu-Hf-Q (Q = S, Se) System

  • Corresponding author: Sheng-Ping GUO, spguo@yzu.edu.cn
  • Received Date: 28 May 2019
    Accepted Date: 26 July 2019

    Fund Project: NNSFC 21771159State Key Laboratory of Structural Chemistry 20190020

Figures(3)

  • Two ternary Eu-Hf-Q (Q = S, Se) chalcogenides, EuHfSe3 (1) and Eu5Hf3S12 (2), have been synthesized by a facile solid state routine and structurally characterized by single-crystal X-ray diffraction technique. They crystallize in the orthorhombic space group Pnma (1) or hexagonal P62m (2), and diverse Hf-Q chains exist in their 3D structures. The electronic structure of 1 is also calculated according to density functional theory.
  • Rare-earth chalcogenides (RECh) have been investigated extensively in the past years in view of their rich structures and versatile application potentials[1]. Recently, more and more RECh compounds are updated to this interesting family, including BaRE2In2Q7 (RE = La-Nd; Q = S, Se)[2], RE4S4Te3 (RE = Gd, Ho, Er, Tm)[3], Ba3La4Ga2Sb2S15[4], Yb6Ga4S15[5], MgRE6Si2S14[6], BaRESn2Q6 (RE = Ce, Pr, Nd; Q = S; RE = Ce, Q = Se)[7], RE3S3BO3 (RE = Gd, Sm)[8, 9] and RE3GaS6 (RE = Dy, Y)[10]. Apart from their structures, these RECh compounds demonstrate attractive photocatalytic, second-order nonlinear optic (NLO), magnetic, photoluminescent, and photocurrent responsive activities.

    Pushed by these progresses, it still makes sense to explore more new RECh compounds. On the other hand, divalent rare-earth metal Eu exhibits similar coordination style and ionic radius with alkali-earth (AE) metals, and AE chalcogenides behave great potentials as NLO[11, 12], photovoltaic[13], and thermoelectric materials[14]. Combining these considerations together, it is interesting to obtain new Eu-based chalcogenides (EuCh). Following our recent achievements on EuCh compounds, viz. EuZnGeS4[15], α-EuZrS3[16], Eu0.81Ga2Te4[17], Eu9MgS2B20O41[18], Cu2EuMQ4 (M = Si, Ge; Q = S, Se)[19], and Eu8In17.33S34[20], two new ternary RECh compounds were synthesized by us recently, namely, EuHfSe3 (1) and Eu5Hf3S12 (2). Here, we report their crystal structures, especially the diverse Hf-Q chains and the electronic structure of 1.

    All starting materials were used as received without further purification. Single crystals of 1 and 2 were obtained by solid-state reactions with KI (99 %) as flux. The starting materials are Eu2O3 (99.99%), S or Se (99.999%), HfO2 (99.9%), and B powder (99%) with the stoichiometric ratios. A standard synthetic process is like this. Each sample has a total mass of 500 and 400 mg KI additional. The mixture of starting materials was ground into fine powder in an agate mortar and pressed into a pellet, followed by being loaded into a quartz tube. The tube was evacuated to be 1 × 10–4 torr and flame-sealed. The sample was placed into a muffle furnace, heated from room temperature to 573 K in 5 h and maintained for 5 h, followed by heating to 873 K in 5 h and maintained for 5 h, then heated to 1223 K in 5 h and maintained for 5 days, finally cooled down to 573 K in 5 days and powered off. The crystals of 1 and 2 stable in moisture and air were obtained, which was then washed using ethanol and hot water under ultrasonic wave.

    Semiquantitative microscope element analysis on the as-prepared single crystals was performed on a field-emission scanning electron microscope (FESEM, Zeiss-Supra55) equipped with an energy dispersive X-ray spectroscope (EDS, Bruker, Quantax), which confirmed the presence of Eu, Hf, and S/Se with the approximate compositions of 1 and 2, respectively, and no other elements were detected. The exact compositions were established from the X-ray structure determinations.

    The intensity data sets were collected on a Bruker D8 QUEST X-ray diffractometer with graphite-monochromated Mo radiation (λ = 0.71073 Å). The structures were solved by direct methods and refined by full-matrix least-squares techniques on F2 with anisotropic thermal parameters for all atoms. All the calculations were performed with Siemens SHELXL-2015 package of crystallographic software[21]. The final refinement included anisotropic displacement parameters for all atoms and a secondary extinction correction. Compound 1 crystallizes in orthorhombic space group Pnma with Z = 4, a = 8.8767(9), b = 3.9333(4), c = 14.3988(16) Å, V = 502.73(9) Å3, Dc = 7.496 g/cm3, μ = 54.526 mm–1, S = 1.051, (Δ/σ)max = 0.091, (Δρ)max = 1.29, (Δρ)min = –1.32 e/Å3, the final R = 0.0195 and wR = 0.0334. Compound 2 crystallizes in hexagonal space group P¯62m with Z = 1, a = 11.6376(3), c = 3.9335(2) Å, V = 461.36(3) Å3, Dc = 6.047 g/cm3, μ = 34.850 mm–1, S = 1.083, (Δ/σ)max = 0.024, (Δρ)max = 2.39, (Δρ)min = –1.54 e/Å3, the final R = 0.0298 and wR = 0.0722. The bond lengths of 1 and 2 are listed in Table 1.

    Table 1

    Table 1.  Bond Lengths (Å) for 1 and 2
    DownLoad: CSV
    EuHfSe3 (1)
    Bond Dist. Bond Dist.
    Eu(1)–Se(1) 3.171(1) Hf(1)–Se(1) 2.723(1)
    Eu(1)–Se(2)#5 3.373(1) Hf(1)–Se(1)#1 2.696(1)
    Eu(1)–Se(2)#6 3.206(1) Hf(1)–Se(1)#2 2.696(1)
    Eu(1)–Se(2)#7 3.206(1) Hf(1)–Se(2) 2.675(1)
    Eu(1)–Se(3)#1 3.201(1) Hf(1)–Se(2)#3 2.675(1)
    Eu(1)–Se(3)#2 3.201(1) Hf(1)–Se(3) 2.561(1)
    Eu(1)–Se(3)#8 3.161(1)
    Eu5Hf3S12 (2)
    Bond Dist. Bond Dist.
    Eu(1)–S(1) 2.846(4) Eu(2)–S(1)#11 3.029(4)
    Eu(1)–S(1)#3 2.846(4) Eu(2)–S(1)#12 3.029(4)
    Eu(1)–S(1)#5 2.846(4) Eu(2)–S(2) 3.380(1)
    Eu(1)–S(1)#7 2.846(4) Eu(2)–S(2)#8 3.380(1)
    Eu(1)–S(2)#8 2.917(8) Eu(2)–S(2)#12 3.380(1)
    Eu(1)–S(3) 2.871(2) Hf(1)–S(1) 2.529(5)
    Eu(1)–S(3)#9 2.871(2) Hf(1)–S(1)#1 2.529(5)
    Eu(2)–S(1) 3.029(4) Hf(1)–S(2) 2.543(5)
    Eu(2)–S(1)#5 3.029(4) Hf(1)–S(2)#2 2.543(5)
    Eu(2)–S(1)#8 3.029(4) Hf(1)–S(3) 2.638(6)
    Eu(2)–S(1)#10 3.029(4) Hf(1)–S(3)#2 2.638(6)
    Symmetry transformations used to generate the equivalent atoms: #1: –x, 1–y, 1–z; #2: –x, –y, 1–z; #3: x, 1+y, z; #4: x, –1+y, z;#5: 1/2–x, –y, 1/2+z; #6: –1/2+x, y, 3/2–z; #7: –1/2+x, 1+y, 3/2–z; #8: 1/2–x, 1–y, 1/2+z for 1. #1: 2–x, 1–x+y, 1–z;#2: x, y, 1+z; #3: –y+x, –y, –z; #4: –y+x, –y, z; #5: x, y, –1+z; #6: x, y, –z; #7: –y+x, –y, 1–z; #8: 1+yx, 1–x, z;#9: 1–y, –1+xy, z; #10: 1+yx, 1–x, –1+z; #11: 1–y, xy, –1+z; #12: 1–y, xy, z for 2

    Since compound 2 contains trivalent Eu3+ ions, the efforts to calculate their electronic structures failed. Therefore, only calculation on 1 was performed. The calculation model was built directly from its single-crystal diffraction data, and no further geometry optimization was performed. The electronic structure calculation including band structure and density of states based on density functional theory (DFT) was performed using the CASTEP code in software Material Studio[22]. The generalized gradient approximation (GGA) was chosen as the exchange-correlation functional and a plane wave basis with the projector-augmented wave (PAW) potentials used. The plane-wave cutoff energy of 480 eV and the threshold of 10–5 eV were set for the self-consistent-field convergence of the total electronic energy. The valence electronic configurations for Eu, Hf, and Se were 4f76s2, 5d26s2 and 4s24p4, respectively. The numerical integration of the Brillouin zone was performed using 3 × 6 × 2 Monkhorst-Pack k-point meshes and the Fermi level (Ef = 0 eV) was selected as the reference[23].

    Compound 1 is a new member belonging to the M-M-Q3 (M = divalent metal Ca, Sr, Ba, Pb, Sn, Eu, Yb; M = Ti, Zr, Hf; Q = S, Se) family with the perovskite structure, and it is also the first M-Hf-Se3 compound. It crystallizes in orthorhombic space group Pnma, isostructural with the previously studied α-EuZrS3[16]. There are one Eu, one Hf, and three Se atoms in the crystallographically independent unit. The 3D structure is constructed by EuSe8 bicapped trigonal prisms and HfSe6 octahedra (Fig. 1). The latter are linked together via sharing Se edges with four neighbouring HfSe6 units to form ladder-like {[HfSe3]2–} chains along the b-axis. This chain also can be viewed as built by pseudo-cubane Hf3Se4 units, and each such unit contains three Se(1) and one Se(2) atoms. The {[HfSe3]2–} chain can be recognized as a double-chain structure unit, too, comprised of two parallel {[HfSe4]4–} chains, which are linked together via Eu–Se(1) bonds with the longest distance of 2.723(1) Å.

    Figure 1

    Figure 1.  (a) Coordination geometry of 1. (b) Ladder-like {[HfSe3]2–} chains shown in the structure of 1. For clarity, the Eu–S bonds are omitted. Symmetry transformations used to generate the equivalent atoms: #1: –x, 1–y, 1–z; #2: –x, –y, 1–z; #3: x, 1+y, z; #4: x, –1+y, z; #5: 1/2–x, –y, 1/2+z; #6: –1/2+x, y, 3/2–z; #7: –1/2+x, 1+y, 3/2–z; #8: 1/2–x, 1–y, 1/2+z

    Compound 2 is a new selenide crystallized in the hexagonal space group P¯62m, isostructural with Eu5Zr3S12[24]. Different from 1, there are two types of Eu ions in the crystallographically independent unit, and they are ninefold (Eu(1))- or sevenfold (Eu(2))-coordinated with S atoms to form tricapped and monocapped trigonal prisms, respectively (Fig. 2). In the EuS9 unit, there are only two kinds of Eu–S bond lengths, 3.029(3) (× 6) and 3.380(1) (× 3) Å, while in the EuS7 unit, three types of Eu–S distances can be found, 2.846(2) (× 4), 2.872(1) (× 2) and 2.917(5) (× 1) Å. Each Hf atom bonds with six S atoms to form HfS6 octahedron geometry, and these HfS6 units connect with each other to form linear {[HfS4]4–} chains along the c-axis.

    Figure 2

    Figure 2.  (a) Coordination geometry of 2. (b) {[HfS4]4–} chains shown in the structure of 2. For clarity, the Eu–S bonds are omitted. Symmetry transformations used to generate the equivalent atoms: #1: 2–x, 1–x+y, 1–z; #2: x, y, 1+z; #3: –y+x, –y, –z; #4: –y+x, –y, z; #5: x, y, –1+z; #6: x, y, –z; #7: –y+x, –y, 1–z; #8: 1+yx, 1–x, z; #9: 1–y, –1+xy, z; #10: 1+yx, 1–x, –1+z; #11: 1–y, xy, –1+z; #12: 1–y, xy, z

    It is interesting that both the two compounds contain Hf–Q constructed chains, namely, linear single one in 2 and linear ladder-like or double-one in 1, though the coordination geometries of Hf are the same, viz. octahedra in 1 and 2. The oxidation states of Eu ions can be easily assigned to Eu2+ in 1, and Eu2+ and Eu3+ with the molar ratio of 3:2 coexisted in 2 to make the whole molecules electro-neutral. To date, only Eu0.4ZrSe2[25], LaTi1.667Se4.334[26] and La1.2Ti2Se5.2[26] can be found for the RE-M-Q3 (RE = rare-earth metal; M = Ti, Zr, Hf; Q = S, Se) system from the Inorganic Crystal Structure Database (ICSD) apart from the structures studied here. However, there should be more Eu, M-based chalcogenides existing based on the similarity of Eu2+ and AE2+ ions. As far as we know, except for the AE-M-Q3 system, there are Ba2Zr3S7, Ba2ZrS4, Ba3Zr2S7, Ba4Zr3S10, Ba5Hf4S13, Ba6Hf5S16, Ba15Zr14Se42, and Sr21Ti19Se57 found in the ICSD. Therefore, there is a great opportunity to obtain more ternary Eu-M-Q compounds.

    The yields of 1 and 2 are really low, even though hard efforts have been made to optimize the synthetic method, which impedes our interest to explore their potential physical properties, such as magnetic and photoluminescent data. On the other hand, hitherto, it is still a great challenge to calculate the electronic structures of compounds containing RE metal ions. Usually, RE metal ions with f0, f7, or f14 electronic configuration can be calculated. Therefore, only the electronic structure of 1 is computed.

    To investigate the electronic structure of 1, the band structure and density of states (DOS) computations based on the DFT theory were performed using Materials Studio software. The calculated band structure along high symmetry points of the first Brillouin zone is shown in Fig. 3a, from which it can be seen that both the bottom of conduction band and the top of valence band locate at the G point, indicating that 1 has a direct band gap of 0.226 eV. This value is possibly lower than the experimental one in view of the limitation of DFT. The valence orbitals are mainly contributed by Se-4p and Eu-5p ones (Fig. 3b).

    Figure 3

    Figure 3.  Electronic band structure (a) and DOS (b) of 1. The Fermi level (red line) is set at 0 eV

    1. [1]

      Mitchell, K.; Ibers, J. A. Rare-earth transition-metal chalcogenides. Chem. Rev. 2002, 102, 1929–1952.  doi: 10.1021/cr010319h

    2. [2]

      Yin, W. L.; Iyer, A. K.; Lin, X. S.; Li, C.; Yao, J. Y.; Mar, A. Quaternary chalcogenides BaRE2In2Ch7 (RE = La–Nd; Ch = S, Se) containing InCh5 trigonal bipyramids. Dalton Trans. 2016, 45, 12329–12337.  doi: 10.1039/C6DT02385A

    3. [3]

      Chi, Y.; Rong, L. Z.; Suen, N. T.; Xue, H. G.; Guo, S. P. Crystal chemistry and photocatalytic properties of RE4S4Te3 (RE = Gd, Ho, Er, Tm), experimental and theoretical investigations. Inorg. Chem. 2018, 57, 5343–5351.  doi: 10.1021/acs.inorgchem.8b00344

    4. [4]

      Duan, R. H.; Shen, J. N.; Lin, C. S.; Liu, P. F.; Lin, H.; Huang-Fu, S. X.; Zhao, H. J.; Khan, M. A.; Chen, L. Syntheses, structures, and properties of sulfides constructed by SbS4 teeter-totter polyhedra: Ba3La4Ga2Sb2S15 and BaLa3GaSb2S10. Inorg. Chem. Front. 2017, 4, 123–130.  doi: 10.1039/C6QI00346J

    5. [5]

      Lin, H.; Shen, J. N.; Zhu, W. W.; Liu, Y.; Wu, X. T.; Zhu, Q. L.; Wu, L. M. Two new phases in the ternary RE–Ga–S systems with the unique interlinkage of GaS4 building units: synthesis, structure, and properties. Dalton Trans. 2017, 46, 13731–13738.  doi: 10.1039/C7DT02545A

    6. [6]

      Chi, Y.; Guo, S. P. Syntheses, crystal and electronic structure of a series of quaternary rare-earth sulfides MgRE6Si2S14 (RE = Y, Ce, Pr, Nd and Sm). J. Mol. Struct. 2017, 1127, 53–58.  doi: 10.1016/j.molstruc.2016.07.088

    7. [7]

      Feng, K.; Zhang, X.; Yin, W. L.; Shi, Y. G.; Yao, J. Y.; Wu, Y. C. New quaternary rare-earth chalcogenides BaLnSn2Q6 (Ln = Ce, Pr, Nd, Q = S; Ln = Ce, Q = Se): synthesis, structure, and magnetic properties. Inorg. Chem. 2014, 53, 2248–2253.  doi: 10.1021/ic402934m

    8. [8]

      Guo, S. P.; Chi, Y.; Xue, H. G. Sm3S3BO3: the first sulfide borate without S–O and B–S bonds. Inorg. Chem. 2015, 54, 11052–11054.  doi: 10.1021/acs.inorgchem.5b01930

    9. [9]

      Chi, Y.; Guo, S. P.; Kong, H. J.; Xue, H. G. Crystal and electronic structures, optical and magnetic properties of novel rare-earth sulfide borates RE3S3BO3 (RE = Sm, Gd). New J. Chem. 2016, 40, 6720–6727.  doi: 10.1039/C6NJ00549G

    10. [10]

      Zhang, M. J.; Li, B. X.; Liu, B. W.; Fan, Y. H.; Li, X. G.; Zeng, H. Y.; Guo, G. C. Ln3GaS6 (Ln = Dy, Y): new infrared nonlinear optical materials with high laser induced damage thresholds. Dalton Trans. 2013, 42, 14223–14229.  doi: 10.1039/c3dt51139a

    11. [11]

      Guo, S. P.; Chi, Y.; Guo, G. C. Recent achievements on middle and far-infrared second-order nonlinear optical materials. Coord. Chem. Rev. 2017, 335, 44–57.  doi: 10.1016/j.ccr.2016.12.013

    12. [12]

      Pan, Y.; Guo, S. P.; Liu, B. W.; Xue, H. G.; Guo, G. C. Second-order nonlinear optical crystals with mixed-anions. Coord. Chem. Rev. 2018, 374, 464–496.  doi: 10.1016/j.ccr.2018.07.013

    13. [13]

      Chen, M. M.; Xue, H. G.; Guo, S. P. Multinary metal chalcogenides with tetrahedral structures for second-order nonlinear optical, photocatalytic, and photovoltaic applications. Coord. Chem. Rev. 2018, 368, 115–133.  doi: 10.1016/j.ccr.2018.04.014

    14. [14]

      Moroz, N. A.; Bauer, C.; Williams, L.; Olvera, A.; Casamento, J.; Page, A. A.; Bailey, T. P.; Weiland, A.; Stoyko, S. S.; Kioupakis, E.; Uher, C.; Aitken, J. A.; Poudeu, P. F. P. Insights on the synthesis, crystal and electronic structures, and optical and thermoelectric properties of Sr1–xSbxHfSe3 orthorhombic perovskite. Inorg. Chem. 2017, 57, 7402–7411.

    15. [15]

      Chi, Y.; Guo, S. P.; Xue, H. G. Band gap tuning from indirect EuGa2S4 to direct EuZnGeS4 semiconductor: syntheses, crystal and electronic structures, and optical properties. RSC Adv. 2017, 7, 5039–5045.  doi: 10.1039/C6RA25283D

    16. [16]

      Guo, S. P.; Chi, Y.; Zou, J. P.; Xue, H. G. Crystal and electronic structures, and photoluminescence and photocatalytic properties of α-EuZrS3. New J. Chem. 2016, 40, 10219–10226.  doi: 10.1039/C6NJ02106A

    17. [17]

      Guo, S. P.; Sun, Z. D. Eu1-xGa2Te4 (x ≈ 0.19) and EuY2Se4, experimental and theoretical investigations. Chin J. Struct. Chem. 2018, 37, 1243–1249.

    18. [18]

      Chi, Y.; Xu, J.; Xue, H. G.; Zhang, Y. P.; Chen, X. L.; Whangbo, M. H.; Guo, S. P.; Deng, S. Q. Triple-kagomé-layer slabs of mixed-valence rare-earth ions exhibiting quantum spin liquid behaviors: synthesis and characterization of Eu9MgS2B20O41. J. Am. Chem. Soc. 2019, 141, 9533–9536.  doi: 10.1021/jacs.9b04627

    19. [19]

      Sun, Z. D.; Chi, Y.; Guo, S. P. Cu2EuMQ4 (M = Si, Ge; Q = S, Se): syntheses, structure study and physical properties determination. J. Solid State Chem. 2019, 269, 225–232.  doi: 10.1016/j.jssc.2018.09.030

    20. [20]

      Chi, Y.; Jiang, T. F.; Xue, H. G.; Guo, S. P. Transition metal free monoclinic Eu8In17.33S34 and its anisotropic photoelectronic responses. Inorg. Chem. 2019, 58, 3574–3577.  doi: 10.1021/acs.inorgchem.8b03256

    21. [21]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8.  doi: 10.1107/S2053229614024218

    22. [22]

      Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. : Condens. Matter. 2012, 14, 2717–2744.

    23. [23]

      Guo, S. P.; Guo, G. C.; Wang, M. S.; Zou, J. P.; Xu, G.; Wang, G. J.; Long, X. F.; Huang, J. S. A series of new infrared NLO semiconductors, ZnY6Si2S14, AlxDy3(SiyAl1-y)S7, and Al0.33Sm3SiS7. Inorg. Chem. 2009, 48, 7059–7065.  doi: 10.1021/ic802443n

    24. [24]

      Jakubcova, P.; Schappacher, F. M.; Pöttgen, R.; Johrendt, D. Structure and properties of mixed-valence compound Eu5Zr3S12. Z. Anorg. Allg. Chem. 2009, 635, 759–763.  doi: 10.1002/zaac.200900075

    25. [25]

      Gourdon, O.; Cario, L.; Petricek, V.; Perez-Mato, J. M.; Evain, M. Synthesis, structure determination, and twinning of two new composite compounds in the hexagonal perovskite-like sulfide family: Eu8/7TiS3 and Sr8/7TiS3. Z. Kristallogr. 2001, 216, 541–555.

    26. [26]

      Ren, Y. Crystal structure determination of the TiSe2-based misfit layer compound (LaSe)1.20(TiSe2)2. Z. Kristallogr. 1997, 212, 586–592.

    1. [1]

      Mitchell, K.; Ibers, J. A. Rare-earth transition-metal chalcogenides. Chem. Rev. 2002, 102, 1929–1952.  doi: 10.1021/cr010319h

    2. [2]

      Yin, W. L.; Iyer, A. K.; Lin, X. S.; Li, C.; Yao, J. Y.; Mar, A. Quaternary chalcogenides BaRE2In2Ch7 (RE = La–Nd; Ch = S, Se) containing InCh5 trigonal bipyramids. Dalton Trans. 2016, 45, 12329–12337.  doi: 10.1039/C6DT02385A

    3. [3]

      Chi, Y.; Rong, L. Z.; Suen, N. T.; Xue, H. G.; Guo, S. P. Crystal chemistry and photocatalytic properties of RE4S4Te3 (RE = Gd, Ho, Er, Tm), experimental and theoretical investigations. Inorg. Chem. 2018, 57, 5343–5351.  doi: 10.1021/acs.inorgchem.8b00344

    4. [4]

      Duan, R. H.; Shen, J. N.; Lin, C. S.; Liu, P. F.; Lin, H.; Huang-Fu, S. X.; Zhao, H. J.; Khan, M. A.; Chen, L. Syntheses, structures, and properties of sulfides constructed by SbS4 teeter-totter polyhedra: Ba3La4Ga2Sb2S15 and BaLa3GaSb2S10. Inorg. Chem. Front. 2017, 4, 123–130.  doi: 10.1039/C6QI00346J

    5. [5]

      Lin, H.; Shen, J. N.; Zhu, W. W.; Liu, Y.; Wu, X. T.; Zhu, Q. L.; Wu, L. M. Two new phases in the ternary RE–Ga–S systems with the unique interlinkage of GaS4 building units: synthesis, structure, and properties. Dalton Trans. 2017, 46, 13731–13738.  doi: 10.1039/C7DT02545A

    6. [6]

      Chi, Y.; Guo, S. P. Syntheses, crystal and electronic structure of a series of quaternary rare-earth sulfides MgRE6Si2S14 (RE = Y, Ce, Pr, Nd and Sm). J. Mol. Struct. 2017, 1127, 53–58.  doi: 10.1016/j.molstruc.2016.07.088

    7. [7]

      Feng, K.; Zhang, X.; Yin, W. L.; Shi, Y. G.; Yao, J. Y.; Wu, Y. C. New quaternary rare-earth chalcogenides BaLnSn2Q6 (Ln = Ce, Pr, Nd, Q = S; Ln = Ce, Q = Se): synthesis, structure, and magnetic properties. Inorg. Chem. 2014, 53, 2248–2253.  doi: 10.1021/ic402934m

    8. [8]

      Guo, S. P.; Chi, Y.; Xue, H. G. Sm3S3BO3: the first sulfide borate without S–O and B–S bonds. Inorg. Chem. 2015, 54, 11052–11054.  doi: 10.1021/acs.inorgchem.5b01930

    9. [9]

      Chi, Y.; Guo, S. P.; Kong, H. J.; Xue, H. G. Crystal and electronic structures, optical and magnetic properties of novel rare-earth sulfide borates RE3S3BO3 (RE = Sm, Gd). New J. Chem. 2016, 40, 6720–6727.  doi: 10.1039/C6NJ00549G

    10. [10]

      Zhang, M. J.; Li, B. X.; Liu, B. W.; Fan, Y. H.; Li, X. G.; Zeng, H. Y.; Guo, G. C. Ln3GaS6 (Ln = Dy, Y): new infrared nonlinear optical materials with high laser induced damage thresholds. Dalton Trans. 2013, 42, 14223–14229.  doi: 10.1039/c3dt51139a

    11. [11]

      Guo, S. P.; Chi, Y.; Guo, G. C. Recent achievements on middle and far-infrared second-order nonlinear optical materials. Coord. Chem. Rev. 2017, 335, 44–57.  doi: 10.1016/j.ccr.2016.12.013

    12. [12]

      Pan, Y.; Guo, S. P.; Liu, B. W.; Xue, H. G.; Guo, G. C. Second-order nonlinear optical crystals with mixed-anions. Coord. Chem. Rev. 2018, 374, 464–496.  doi: 10.1016/j.ccr.2018.07.013

    13. [13]

      Chen, M. M.; Xue, H. G.; Guo, S. P. Multinary metal chalcogenides with tetrahedral structures for second-order nonlinear optical, photocatalytic, and photovoltaic applications. Coord. Chem. Rev. 2018, 368, 115–133.  doi: 10.1016/j.ccr.2018.04.014

    14. [14]

      Moroz, N. A.; Bauer, C.; Williams, L.; Olvera, A.; Casamento, J.; Page, A. A.; Bailey, T. P.; Weiland, A.; Stoyko, S. S.; Kioupakis, E.; Uher, C.; Aitken, J. A.; Poudeu, P. F. P. Insights on the synthesis, crystal and electronic structures, and optical and thermoelectric properties of Sr1–xSbxHfSe3 orthorhombic perovskite. Inorg. Chem. 2017, 57, 7402–7411.

    15. [15]

      Chi, Y.; Guo, S. P.; Xue, H. G. Band gap tuning from indirect EuGa2S4 to direct EuZnGeS4 semiconductor: syntheses, crystal and electronic structures, and optical properties. RSC Adv. 2017, 7, 5039–5045.  doi: 10.1039/C6RA25283D

    16. [16]

      Guo, S. P.; Chi, Y.; Zou, J. P.; Xue, H. G. Crystal and electronic structures, and photoluminescence and photocatalytic properties of α-EuZrS3. New J. Chem. 2016, 40, 10219–10226.  doi: 10.1039/C6NJ02106A

    17. [17]

      Guo, S. P.; Sun, Z. D. Eu1-xGa2Te4 (x ≈ 0.19) and EuY2Se4, experimental and theoretical investigations. Chin J. Struct. Chem. 2018, 37, 1243–1249.

    18. [18]

      Chi, Y.; Xu, J.; Xue, H. G.; Zhang, Y. P.; Chen, X. L.; Whangbo, M. H.; Guo, S. P.; Deng, S. Q. Triple-kagomé-layer slabs of mixed-valence rare-earth ions exhibiting quantum spin liquid behaviors: synthesis and characterization of Eu9MgS2B20O41. J. Am. Chem. Soc. 2019, 141, 9533–9536.  doi: 10.1021/jacs.9b04627

    19. [19]

      Sun, Z. D.; Chi, Y.; Guo, S. P. Cu2EuMQ4 (M = Si, Ge; Q = S, Se): syntheses, structure study and physical properties determination. J. Solid State Chem. 2019, 269, 225–232.  doi: 10.1016/j.jssc.2018.09.030

    20. [20]

      Chi, Y.; Jiang, T. F.; Xue, H. G.; Guo, S. P. Transition metal free monoclinic Eu8In17.33S34 and its anisotropic photoelectronic responses. Inorg. Chem. 2019, 58, 3574–3577.  doi: 10.1021/acs.inorgchem.8b03256

    21. [21]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8.  doi: 10.1107/S2053229614024218

    22. [22]

      Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. : Condens. Matter. 2012, 14, 2717–2744.

    23. [23]

      Guo, S. P.; Guo, G. C.; Wang, M. S.; Zou, J. P.; Xu, G.; Wang, G. J.; Long, X. F.; Huang, J. S. A series of new infrared NLO semiconductors, ZnY6Si2S14, AlxDy3(SiyAl1-y)S7, and Al0.33Sm3SiS7. Inorg. Chem. 2009, 48, 7059–7065.  doi: 10.1021/ic802443n

    24. [24]

      Jakubcova, P.; Schappacher, F. M.; Pöttgen, R.; Johrendt, D. Structure and properties of mixed-valence compound Eu5Zr3S12. Z. Anorg. Allg. Chem. 2009, 635, 759–763.  doi: 10.1002/zaac.200900075

    25. [25]

      Gourdon, O.; Cario, L.; Petricek, V.; Perez-Mato, J. M.; Evain, M. Synthesis, structure determination, and twinning of two new composite compounds in the hexagonal perovskite-like sulfide family: Eu8/7TiS3 and Sr8/7TiS3. Z. Kristallogr. 2001, 216, 541–555.

    26. [26]

      Ren, Y. Crystal structure determination of the TiSe2-based misfit layer compound (LaSe)1.20(TiSe2)2. Z. Kristallogr. 1997, 212, 586–592.

  • 加载中
    1. [1]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    2. [2]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    3. [3]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    4. [4]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    5. [5]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    6. [6]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    7. [7]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    8. [8]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    9. [9]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    10. [10]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    11. [11]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    12. [12]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    13. [13]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    14. [14]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    15. [15]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    16. [16]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    17. [17]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    18. [18]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    19. [19]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    20. [20]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

Metrics
  • PDF Downloads(5)
  • Abstract views(351)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return