Citation: Xu-Min CAI, Xin-Fei CHEN, Xue-Dan ZHANG, Yuan HUANG, Wen GU, Fei WANG. Syntheses, Crystal Structures, and Electrochemical Properties of Three Anhydrides Based on Ferrocenecarboxylic Acid and Dehydroabietic Acid[J]. Chinese Journal of Structural Chemistry, ;2020, 39(3): 579-587. doi: 10.14102/j.cnki.0254-5861.2011-2472 shu

Syntheses, Crystal Structures, and Electrochemical Properties of Three Anhydrides Based on Ferrocenecarboxylic Acid and Dehydroabietic Acid

  • Corresponding author: Xu-Min CAI, xumin.cai@njfu.edu.cn
  • Received Date: 27 May 2019
    Accepted Date: 29 August 2019

    Fund Project: the National Natural Science Foundation of China 21601087the Topnotch Academic Programs Project TAPPthe Priority Academic Program Development of Jiangsu Higher Education Institution PAPD

Figures(4)

  • Three title compounds (3~5) have been successfully synthesized via interactive reactions between ferrocenecarboxylic and dehydroabietic acids, which can be characterized by FT-IR, elemental analysis, ESI-MS, and NMR spectroscopy. The crystal structures of compounds 4 and 5 can be determined by single-crystal X-ray diffraction. Compound 4 is of orthorhombic system, space group P212121 with a = 7.7010(5), b = 11.7542(9), c = 28.3173(18) Å, Z = 4, V = 2563.3(3) Å3, Mr = 512.45, Dc = 1.328 g/cm-1, S = 1.041, μ = 0.619 mm-1, F(000) = 1088, the final R = 0.0396 and wR = 0.0945 for 4394 observed reflections (I > 2σ(I)). Compound 5 crystallizes in orthorhombic system, space group P21212 as well, with parameters of a = 11.9875(15), b = 19.651(2), c = 7.2163(9) Å, Z = 2, V = 1699.9(3) Å3, Mr = 582.83, Dc = 1.139 g/cm-1, S = 1.091, μ = 0.070 mm-1, F(000) = 636, the final R = 0.0653 and wR = 0.0719 for 1518 observed reflections (I > 2σ(I)). Additionally, electrochemical properties of compounds 3 and 4 have been investigated by the cyclic and differential pulse voltammogram techniques.
  • 加载中
    1. [1]

      Halbrook, N. J.; Lawrence, R. V. The isolation of dehydroabietic acid from disproportionated rosin. J. Org. Chem. 1966, 31, 4246–4247.  doi: 10.1021/jo01350a510

    2. [2]

      Ulusu, N. N.; Ercil, D.; Sakar, M. K.; Tezcan, E. F. Abietic acid inhibits lipoxygenase activity. Phytother. Res. 2002, 16, 88–90.  doi: 10.1002/ptr.983

    3. [3]

      Fernández, M. A.; Tornos, M. P.; García, M. D.; de las Heras, B.; Villar, A. M.; Sáenz, M. T. Anti-inflammatory activity of abietic acid, a diterpene isolated from Pimenta racemosa var. grissea. J. Pharm. Pharmacol. 2001, 53, 867–872.

    4. [4]

      Huang, X. C.; Wang, M.; Pan, Y. M.; Tian, X. Y.; Wang, H. S.; Zhang, Y. Synthesis and antitumor activities of novel α-aminophosphonates dehydroabietic acid derivatives. Bioorg. Med. Chem. Lett. 2013, 23, 5283–5289.  doi: 10.1016/j.bmcl.2013.08.005

    5. [5]

      Zapata, B.; Rojas, M.; Betancur-Galvis, L.; Mesa-Arango, A. C.; Pérez-Guaita, D.; González, M. A. Cytotoxic, immunomodulatory, antimycotic, and antiviral activities of semisynthetic 14-hydroxyabietane derivatives and triptoquinone C-4 epimers. Med. Chem. Commun. 2013, 4, 1239–1246.  doi: 10.1039/c3md00151b

    6. [6]

      Kim, J.; Kang, Y. G.; Lee, J. Y.; Choi, D. H.; Cho, Y. U.; Shin, J. M.; Park, J. S.; Lee, J. H.; Kim, W. G.; Seo, D. B.; Lee, T. R.; Miyamoto, Y.; No, K. T. The natural phytochemical dehydroabietic acid is an anti-aging reagent that mediates the direct activation of SIRT1. Molecular and Cellular Endocrinology 2015, 412, 216–225.  doi: 10.1016/j.mce.2015.05.006

    7. [7]

      Chen, N. Y.; Duan, W. G.; Lin, G. S.; Liu, L. Z.; Zhang, R.; Li, D. P. Synthesis and antifungal activity of dehydroabietic acid-based 1, 3, 4-thiadiazole-thiazolidinone compounds. Mol. Divers 2016, 20, 897–905.  doi: 10.1007/s11030-016-9691-x

    8. [8]

      Vahermo, M.; Krogerus, S.; Nasereddin, A.; Kaiser, M.; Brun, R.; Jaffe, C. L.; Yli-Kauhaluoma, J.; Moreira, V. M. Antiprotozoal activity of dehydroabietic acid derivatives against Leishmania donovani and trypanosoma cruzi. Med. Chem. Commun. 2016, 7, 457–463.  doi: 10.1039/C5MD00498E

    9. [9]

      Hou, W.; Luo, Z.; Zhang, G. J.; Cao, D. H.; Li, D.; Ruan, H. Q.; Ruan, B. H.; Su, L.; Xu, H. T. Click chemistry-based synthesis and anticancer activity evaluation of novel C-14 1, 2, 3-triazole dehydroabietic acid hybrids. Eur. J. Med. Chem. 2017, 138, 1042–1052.  doi: 10.1016/j.ejmech.2017.07.049

    10. [10]

      Qu, J.; Song, Y. L.; Ji, W.; Jing, S.; Zhu, D.; Huang, W.; Zheng, M. X.; Li, Y. L.; Ma, J. Macrocyclic Se4N2[7, 7]ferrocenophane and Se2N[10]ferrocenophane containing benzyl unit: synthesis, complexation, crystal structures, electrochemical and optical properties. Dalton Trans. 2016, 45, 3417–3428.  doi: 10.1039/C5DT04763C

    11. [11]

      Yang, F.; Xu, X. L.; Gong, Y. H.; Qiu, W. W.; Sun, Z. R.; Zhou, J. W.; Audebert, P.; Tang, J. Synthesis and nonlinear optical absorption properties of two new conjugated ferrocene-bridge-pyridinium compounds. Tetrahedron 2007, 63, 9188–9194.  doi: 10.1016/j.tet.2007.06.058

    12. [12]

      Singh, A.; Chowdhury, D. R.; Paul, A. A kinetic study of ferrocenium cation decomposition utilizing an integrated electrochemical methodology composed of cyclic voltammetry and amperometry. Analyst 2014, 139, 5747–5754.  doi: 10.1039/C4AN01325E

    13. [13]

      Lozano-Cruz, T.; Ortega, P.; Batanero, B.; Copa-Patiño, J. L.; Soliveri, J.; de la Mata, F. J.; Gómez, R. Synthesis, characterization and antibacterial behavior of water-soluble carbosilane dendrons containing ferrocene at the focal point. Dalton Trans. 2015, 44, 19294–19304.  doi: 10.1039/C5DT02230D

    14. [14]

      Li, S. H.; Wang, Z. J.; Wei, Y. F.; Wu, C. Y.; Gao, S. P.; Jiang, H.; Zhao, X. Q.; Yan, H.; Wang, X. M. Antimicrobial activity of a ferrocene-substituted carborane derivative targeting multidrug-resistant infection. Biomaterials 2013, 34, 90–911.

    15. [15]

      Long, B.; He, C.; Yang, Y.; Xiang, J. Synthesis, characterization and antibacterial activities of some new ferrocene-containing penems. Eur. J. Med. Chem. 2010, 45, 1181–1188.  doi: 10.1016/j.ejmech.2009.12.045

    16. [16]

      Yong, J. P.; Lu, C. Z.; Wu, X. Y. Synthesis of isoxazole moiety containing ferrocene derivatives and preliminarily in vitro anticancer activity. Med. Chem. Commun. 2014, 5, 968–972.  doi: 10.1039/c4md00151f

    17. [17]

      Gil-Hernández, B.; Savvin, S.; Makhloufi, G.; Núñez, P.; Janiak, C.; Sanchiz, J. Proton conduction and long-range ferrimagnetic ordering in two isostructural copper(Ⅱ) mesoxalate metal-organic frameworks. Inorg. Chem. 2015, 54, 1597–1605.  doi: 10.1021/ic502586a

    18. [18]

      Ferrando-Soria, J.; Serra-Crespo, P.; de Lange, M.; Gascon, J.; Kapteijn, F.; Julve, M.; Cano, J.; Lloret, F.; Pasán, J.; Ruiz-Pérez, C.; Journaux, Y.; Pardo, E. Selective gas and vapor sorption and magnetic sensing by an isoreticular mixed-metal-organic framework. J. Am. Chem. Soc. 2012, 134, 15301–15304.  doi: 10.1021/ja3045822

    19. [19]

      Majchrzak, M.; Kostera, S.; Grzelak, M.; Marciniec, B.; Kubicki, M. An efficient catalytic synthesis and characterization of new styryl-ferrocenes and their trans-π-conjugated organosilicon materials. RSC Advances 2016, 6, 39947–39954.  doi: 10.1039/C6RA00859C

    20. [20]

      Scott, H. S.; Nafady, A.; Cashion, J. D.; Bond, A. M.; Moubaraki, B.; Murray, K. S.; Neville, S. M. A ferrocenyl-substituted 1, 2, 4-triazole ligand and its Fe(Ⅱ), Ni(Ⅱ) and Cu(Ⅱ) 1D-chain complexes. Dalton Trans. 2013, 42, 10326–10336.  doi: 10.1039/c3dt50384d

    21. [21]

      Amara, D.; Grinblat, J.; Margel, S. Solventless thermal decomposition of ferrocene as a new approach for one-step synthesis of magnetite nanocubes and nanospheres. J. Mater. Chem. 2012, 22, 2188–2195.  doi: 10.1039/C1JM13942H

    22. [22]

      Rosa, V.; Gaspari, A. P. S.; Folgosa, F.; Cordas, C. M.; Tavares, P.; Santos-Silva, T.; Barroso, S.; Avilés, T. Imine ligands based on ferrocene: synthesis, structural and Mössbauer characterization and evaluation as chromogenic and electrochemical sensors for Hg2+. New J. Chem. 2018, 42, 3334–3343.  doi: 10.1039/C7NJ04319H

    23. [23]

      Ge, J. Z.; Zou, Y.; Yan, Y. H.; Lin, S.; Zhao, X. F.; Cao, Q. Y. A new ferrocene-anthracene dyad for dual-signaling sensing of Cu(Ⅱ) and Hg(Ⅱ). J. Photoch. Photobio. A 2016, 315, 67–75.  doi: 10.1016/j.jphotochem.2015.09.011

    24. [24]

      Wu, P.; Wang, G.; Zhou, L.; Lu, J.; Wang, J. C. The first colorimetric receptor for the B4O72- anion based on nitro substituted phenanthroimidazole ferrocene derivatives. RSC Advances 2018, 8, 3782–3788.  doi: 10.1039/C7RA12700F

    25. [25]

      Karimi-Maleh, H.; Ahanjan, K.; Taghavi, M.; Ghaemy, M. A novel voltammetric sensor employing zinc oxide nanoparticles and a new ferrocene-derivative modified carbon paste electrode for determination of captopril in drug samples. Anal. Methods 2016, 8, 1780–1788.  doi: 10.1039/C5AY03284A

    26. [26]

      Samireddi, S.; Shown, I.; Shen, T. H.; Huang, H. C.; Wong, K. T.; Chen, L. C.; Chen, K. H. Hybrid bimetallic-N4 electrocatalyst derived from a pyrolyzed ferrocene-Co-corrole complex for oxygen reduction reaction. J. Mater. Chem. A 2017, 5, 9279–9286.  doi: 10.1039/C7TA00949F

    27. [27]

      Phakhodee, W.; Duangkamol, C.; Wangngae, S.; Pattarawarapan, M. Acid anhydrides and the unexpected N, N-diethylamides derived from the reaction of carboxylic acids with Ph3P/I2/Et3N. Tetra. Lett. 2016, 57, 325–328.  doi: 10.1016/j.tetlet.2015.12.009

    28. [28]

      Clarke, P. A.; Kayaleh, N. E.; Smith, M. A.; Baker, J. R.; Bird, S. J.; Chan, C. A one-step procedure for the monoacylation of symmetrical 1, 2-diols. J. Org. Chem. 2002, 67, 5226–5231.  doi: 10.1021/jo0257041

    29. [29]

      Trabelsi, I.; Essid, K.; Frikha, M. H. Synthesis of mixed anhydrides of fatty acids: stability and reactivity. Ind. Crop. Prod. 2017, 97, 552–557.  doi: 10.1016/j.indcrop.2017.01.003

    30. [30]

      Dong, Z.; Lu, G.; Wang, J. C.; Liu, P.; Dong, G. B. Modular ipso/ortho difunctionalization of aryl bromides via palladium/norbornene cooperative catalysis. J. Am. Chem. Soc. 2018, 140, 8551–8562.  doi: 10.1021/jacs.8b04153

    31. [31]

      Sheldrick, G. M. SHELXT-integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv. 2015, A71, 3–8.

    32. [32]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, C71, 3–8.

    33. [33]

      Cai, X. M.; Riener, K.; Herdtweck, E.; Pӧthig, A.; Kühn, F. E. Rational synthesis and characterization of dimolybdenum(Ⅱ) compounds bearing ferrocenyl-containing ligands toward modulation of electronic coupling. Inorg. Chem. 2015, 54, 3272–3280.  doi: 10.1021/ic502913w

    34. [34]

      Taniguchi, K.; Aruga, M.; Yasutake, M.; Hirose, T. Solvent control of optical resolution of 2-amino-1-phenylethanol using dehydroabietic acid. Org. Biomol. Chem. 2008, 6, 458–463.  doi: 10.1039/B717071H

    35. [35]

      Shitara, H.; Aruga, M.; Odagiri, E.; Taniguchi, K.; Yasutake, M.; Hirose, T. Dehydroabietic acid esters as chiral dopants for nematic liquid crystals. B. Chem. Soc. Jan. 2007, 80, 589–593.  doi: 10.1246/bcsj.80.589

    36. [36]

      Cai, X. M.; Höhne, D.; Köberl, M.; Cokoja, M.; Pöthig, A.; Herdtweck, E.; Haslinger, S.; Herrmann, W. A.; Kühn, F. E. Synthesis and characterization of dimolybdenum(Ⅱ) complexes connected by carboxylate linkers. Organometallics 2013, 32, 6004–6011.  doi: 10.1021/om400518f

    37. [37]

      Cai, X. M.; Zimmermann, T. K.; Pӧthig, A.; Kühn, F. E. Synthesis and electrochemical properties of cis- and trans-[Mo2(O2C-Fc)2(DArF)2] (O2C-Fc = ferrocenecarboxylate; DArF = N, N'-diarylformamidinate). Inorg. Chem. 2015, 54, 6631–6640.  doi: 10.1021/acs.inorgchem.5b00964

  • 加载中
    1. [1]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    2. [2]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    3. [3]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    4. [4]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    5. [5]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    6. [6]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    7. [7]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    8. [8]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    9. [9]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    10. [10]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    11. [11]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    12. [12]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    13. [13]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    14. [14]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    15. [15]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    18. [18]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

    19. [19]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    20. [20]

      Xubin QianLei XuXu GeZhun LiuCheng FangJianbing WangJunfeng Niu . Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?. Chinese Chemical Letters, 2024, 35(7): 109218-. doi: 10.1016/j.cclet.2023.109218

Metrics
  • PDF Downloads(1)
  • Abstract views(201)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return