Citation: Hai-Yan ZHOU, Yuan-Yuan LI, Jing LI. 3D-QSAR Analysis of Naphthyltriazole (Lesinurad) Analogs as Potent Inhibitors of Urate Transporter 1[J]. Chinese Journal of Structural Chemistry, ;2020, 39(3): 421-436. doi: 10.14102/j.cnki.0254-5861.2011-2469 shu

3D-QSAR Analysis of Naphthyltriazole (Lesinurad) Analogs as Potent Inhibitors of Urate Transporter 1

  • Corresponding author: Jing LI, lij@scut.edu.cn
  • Received Date: 24 May 2019
    Accepted Date: 16 September 2019

    Fund Project: the Science and Technology Project of Guangdong Province 2015A020211005the Guangzhou Science Technology and Innovation Commission 201704020036the Fundamental Research Funds for The Central Universities 2019MS090

Figures(5)

  • To obtain useful information for identifying inhibitors of urate transporter 1 (URAT1), three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis was conducted for a series of lesinurad analogs via Topomer comparative molecular field analysis (CoMFA). A 3D-QSAR model was established using a training set of 51 compounds and externally validated with a test set of 17 compounds. The Topomer CoMFA model obtained (q2 = 0.976, r2 = 0.990) was robust and satisfactory. Subsequently, seven compounds with significant URAT1 inhibitory activity were designed according to the contour maps produced by the Topomer CoMFA model.
  • 加载中
    1. [1]

      Perez-Ruiz, F.; Marimon, E.; Chinchilla, S. P. Hyperuricaemia with deposition: latest evidence and therapeutic approach. Ther. Adv. Musculoskelet Dis. 2015, 7, 225−233.  doi: 10.1177/1759720X15599734

    2. [2]

      Punzi, L.; Scanu, A.; Ramonda, R.; Oliviero, F. Gout as autoinflammatory disease: new mechanisms for more appropriated treatment targets. Autoimmun Rev. 2012, 12, 66−71.  doi: 10.1016/j.autrev.2012.07.024

    3. [3]

      Terkeltaub, R.; Bushinsky, D. A.; Becker, M. A. Recent developments in our understanding of the renal basis of hyperuricemia and the development of novel antihyperuricemic therapeutics. Arthritis Res. Ther. 2006, 8, 1−4.

    4. [4]

      Tan, P. K.; Farrar, J. E.; Gaucher, E. A.; Miner, J. N. Coevolution of URAT1 and uricase during primate evolution: implications for serum urate homeostasis and gout. Mol. Biol. Evol. 2016, 33, 2193−2200.  doi: 10.1093/molbev/msw116

    5. [5]

      Forcet, C.; Stein, E.; Pays, L.; Corset, V.; Llambi, F.; Tessier-Lavigne, M.; Mehlen, P. Netrin-1 mediated axon outgrowth requires deleted in colorectal cancer-dependent MAPK activation. Nature 2002, 417, 443−447.  doi: 10.1038/nature748

    6. [6]

      Hoy, S. M. Lesinurad: first global approval. Drugs 2016, 76, 509−516.  doi: 10.1007/s40265-016-0550-y

    7. [7]

      Tan, P. K.; Liu, S.; Gunic, E.; Miner, J. N. Discovery and characterization of verinurad, a potent and specific inhibitor of URAT1 for the treatment of hyperuricemia and gout. Sci. Rep. 2017, 7, 665−676.  doi: 10.1038/s41598-017-00706-7

    8. [8]

      Poiley, J.; Steinberg, A. S.; Choi, Y. J.; Davis, C. S.; Martin, R. L.; McWherter, C. A.; Boudes, P. F. A randomized, double-blind, active- and placebo-controlled efficacy and safety study of arhalofenate for reducing flare in patients with gout. Arthritis Rheumatol. 2016, 68, 2027−2034.  doi: 10.1002/art.39684

    9. [9]

      Edwards, N. L.; So, A. Emerging therapies for gout. Rheum. Dis. Clin. N. Am. 2014, 40, 375−387.  doi: 10.1016/j.rdc.2014.01.013

    10. [10]

      Mandal, A. K.; Mercado, A.; Foster, A.; Zandi-Nejad, K.; Mount, D. B. Uricosuric targets of tranilast. Pharmacol Res. Perspect. 2017, 5, 291−301.

    11. [11]

      Pan, Y.; Kong, L. D. Urate transporter URAT1 inhibitors: a patent review (2012-2015). Expert Opin. Ther. 2016, 26, 1129−1138.  doi: 10.1080/13543776.2016.1213243

    12. [12]

      Peng, J.; Hu, Q.; Gu, C.; Liu, B.; Jin, F.; Yuan, J.; Feng, J.; Zhang, L.; Lan, J.; Dong, Q.; Cao, G. Discovery of potent and orally bioavailable inhibitors of human uric acid transporter 1 (hURAT1) and binding mode prediction using homology model. Bioorg. Med. Chem. Lett. 2016, 26, 277−282.  doi: 10.1016/j.bmcl.2015.12.040

    13. [13]

      Cai, W.; Liu, W.; Zhang, S.; Wang, J.; Zhao, G. Design, synthesis and bioactivity of highly sterically congested flexible uric acid transporter 1 (URAT1) inhibitors. Chin. J. Org. Chem. 2017, 37, 2303−2314.  doi: 10.6023/cjoc201704038

    14. [14]

      Tian, H.; Liu, W.; Zhou, Z.; Shang, Q.; Liu, Y.; Xie, Y.; Liu, C.; Xu, W.; Tang, L.; Wang, J.; Zhao, G. Discovery of a flexible triazolylbutanoic acid as a highly potent uric acid transporter 1 (URAT1) inhibitor. Molecules 2016, 21, 1543−1548.  doi: 10.3390/molecules21111543

    15. [15]

      Cai, W.; Liu, W.; Xie, Y.; Wu, J.; Liu, Y.; Liu, C.; Xu, W.; Tang, L.; Wang, J.; Zhao, G. Design, synthesis and biological activity of tetrazole-bearing uric acid transporter 1 inhibitors. Chem. Res. Chin. U. 2017, 33, 49−60.  doi: 10.1007/s40242-017-6351-3

    16. [16]

      Peng, J.; Hu, Q.; Gu, C.; Liu, B.; Jin, F.; Yuan, J.; Feng, J.; Zhang, L.; Lan, J.; Dong, Q. Discovery of potent and orally bioavailable inhibitors of human uric acid transporter 1 (hURAT1) and binding mode prediction using homology model. Bioorg. Med. Chem. Lett. 2016, 26, 277−282.  doi: 10.1016/j.bmcl.2015.12.040

    17. [17]

      Cramer, R. D. Topomer CoMFA: a design methodology for rapid lead optimization. J. Med. Chem. 2003, 46, 374−388.  doi: 10.1021/jm020194o

    18. [18]

      Xu, C.; Ren, Y. Molecular modeling studies of [6, 6, 5] tricyclic fused oxazolidinones as fxa inhibitors using 3D-QSAR, topomer CoMFA, molecular docking and molecular dynamics simulations. Bioorg. Med. Chem. Lett. 2015, 25, 4522−4528.  doi: 10.1016/j.bmcl.2015.08.070

    19. [19]

      Halder, A. K.; Amin, S. A.; Jha, T.; Gayen, S. Insight into the structural requirements of pyrimidine-based phosphodiesterase 10A (PDE10A) inhibitors by multiple validated 3D-QSAR approaches. SAR QSAR Environ. Res. 2017, 28, 253−273.  doi: 10.1080/1062936X.2017.1302991

    20. [20]

      Zhao, T. T.; Zhao, Z. A.; Lu, F. T.; Chang, S.; Zhang, J. J.; Pang, J. X.; Tian, Y. X. Two- and three-dimensional QSAR studies on hURAT1 inhibitors with flexible linkers: topomer CoMFA and HQSAR. Mol. Divers. 2019.https://doi.org/10.1007/s11030-019-09936-5  doi: 10.1007/s11030-019-09936-5

    21. [21]

      Leonard, J. T.; Roy, K. On Selection of training and test sets for the development of predictive QSAR models. QSAR Comb. Sci. 2006, 25, 235−251.  doi: 10.1002/qsar.200510161

    22. [22]

      Li, S.; Li, M.; Chao, R.; Dong, C.; Jun, M.; Jing, C.; Tai, L.; Qing, L. 3D-QSAR studies on 4-([1, 2, 4]triazolo[1, 5-α]pyridin-6-yl)-5(3)-(6-methylpyridin-2-yl)imidazole analogues as potent inhibitors of transforming growth factor-β typeⅠreceptor kinase. Chin. J. Struct. Chem. 2018, 37, 517−530.

    23. [23]

      Xiao, C.; Yu, M.; Zhong, Z.; Ling, Z.; Ying, L. Molecular docking, 3D-QSAR and molecular dynamics simulation studies of substituted pyrimidines as selective covalent janus kinase 3 inhibitors. Chin. J. Struct. Chem. 2018, 37, 839−853.

    24. [24]

      Lu, W.; Yan, Z.; Shuai, L.; Ya, C.; Tao, L.; Hai, L. Molecular docking and 3D-QSAR studies on a series of fused heterocyclic amides as B-Raf inhibitors. Chin. J. Struct. Chem. 2017, 36, 1568−1585.

    25. [25]

      Xiang, Y.; Hou, Z.; Zhang, Z. Pharmacophore and qsar studies to design novel histone deacetylase 2 inhibitors. Chem. Biol. Drug Des. 2012, 79, 760−770.  doi: 10.1111/j.1747-0285.2012.01341.x

    26. [26]

      Yang, Q.; Zhang, S. P.; Zhao, S. P. 3D-QSAR studies on a series of indoleamide derivatives as antiplasmodial drugs. Chin. J. Struct. Chem. 2018, 37, 1015−1024.

    27. [27]

      Cramer, R. D. 3rd. Patterson, D. E.; Bunce, J. D. Recent advances in comparative molecular field analysis (CoMFA). Pro. Clin. Biol. Res. 1989, 291, 161−165.

    28. [28]

      Golbraikh, A.; Tropsha, A. Beware of q2. J. Mol. Grap. Model. 2002, 20, 269−276.  doi: 10.1016/S1093-3263(01)00123-1

    29. [29]

      Vrontaki, E.; Melagraki, G.; Mavromoustakos, T.; Afantitis, A. Searching for anthranilic acid-based thumb pocket 2 HCV NS5B polymerase inhibitors through a combination of molecular docking, 3D-QSAR and virtual screening. J. Enzym Inhib. Med. Ch. 2016, 31, 38−52.

    30. [30]

      Hao, C. Z.; Xia, S. W.; Wang, H.; Xue, J.; Yu, L. M. Using 3D-QSAR and molecular docking insight into inhibitors binding with complex-associated kinases CDK8. J. Mol. Struct. 2018, 1173, 498−511.  doi: 10.1016/j.molstruc.2018.05.072

    31. [31]

      Roy, K.; Kar, S. The rm2 metrics and regression through origin approach: reliable and useful validation tools for predictive QSAR models (commentary on 'is regression through origin useful in external validation of QSAR models?'). Eur. J. Pharm. Sci. 2014, 62, 111−114.  doi: 10.1016/j.ejps.2014.05.019

  • 加载中
    1. [1]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

    2. [2]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    3. [3]

      Han YuanFengcai ZhangHongzhe HuangJiafei WuYi YangWanyi HuangDongjing YangZhuoming LiZhe LiLing HuangYi-You HuangHai-Bin LuoLei Guo . Discovery of 3-trifluoromethyl-substituted pyrazoles as selective phosphodiesterase 10A inhibitors for orally attenuating isoprenaline-induced cardiac hypertrophy. Chinese Chemical Letters, 2025, 36(4): 109965-. doi: 10.1016/j.cclet.2024.109965

    4. [4]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    5. [5]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

    6. [6]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    7. [7]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    8. [8]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    9. [9]

      Huan Hu Ying Zhang Shi-Shuang Huang Zhi-Gang Li Yungui Liu Rui Feng Wei Li . Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide. Chinese Journal of Structural Chemistry, 2024, 43(10): 100395-100395. doi: 10.1016/j.cjsc.2024.100395

    10. [10]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    11. [11]

      Xudong ZhaoYuxuan WangXinxin GaoXinli GaoMeihua WangHongliang HuangBaosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901

    12. [12]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    13. [13]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    14. [14]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    15. [15]

      Changyuan BaoYunpeng JiangHaoyin ZhongHuaizheng RenJunhui WangBinbin LiuQi ZhaoFan JinYan Meng ChongJianguo SunFei WangBo WangXimeng LiuDianlong WangJohn Wang . Synergizing 3D-printed structure and sodiophilic interface enables highly efficient sodium metal anodes. Chinese Chemical Letters, 2024, 35(11): 109353-. doi: 10.1016/j.cclet.2023.109353

    16. [16]

      Chengmin HuPingxuan LiuZiyang SongYaokang LvHui DuanLi XieLing MiaoMingxian LiuLihua Gan . Tailor-made overstable 3D carbon superstructures towards efficient zinc-ion storage. Chinese Chemical Letters, 2025, 36(4): 110381-. doi: 10.1016/j.cclet.2024.110381

    17. [17]

      He YaoWenhao JiYi FengChunbo QianChengguang YueYue WangShouying HuangMei-Yan WangXinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076

    18. [18]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    19. [19]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    20. [20]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

Metrics
  • PDF Downloads(1)
  • Abstract views(316)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return