Citation: Hai-Yan ZHOU, Yuan-Yuan LI, Jing LI. 3D-QSAR Analysis of Naphthyltriazole (Lesinurad) Analogs as Potent Inhibitors of Urate Transporter 1[J]. Chinese Journal of Structural Chemistry, ;2020, 39(3): 421-436. doi: 10.14102/j.cnki.0254-5861.2011-2469 shu

3D-QSAR Analysis of Naphthyltriazole (Lesinurad) Analogs as Potent Inhibitors of Urate Transporter 1

  • Corresponding author: Jing LI, lij@scut.edu.cn
  • Received Date: 24 May 2019
    Accepted Date: 16 September 2019

    Fund Project: the Science and Technology Project of Guangdong Province 2015A020211005the Guangzhou Science Technology and Innovation Commission 201704020036the Fundamental Research Funds for The Central Universities 2019MS090

Figures(5)

  • To obtain useful information for identifying inhibitors of urate transporter 1 (URAT1), three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis was conducted for a series of lesinurad analogs via Topomer comparative molecular field analysis (CoMFA). A 3D-QSAR model was established using a training set of 51 compounds and externally validated with a test set of 17 compounds. The Topomer CoMFA model obtained (q2 = 0.976, r2 = 0.990) was robust and satisfactory. Subsequently, seven compounds with significant URAT1 inhibitory activity were designed according to the contour maps produced by the Topomer CoMFA model.
  • 加载中
    1. [1]

      Perez-Ruiz, F.; Marimon, E.; Chinchilla, S. P. Hyperuricaemia with deposition: latest evidence and therapeutic approach. Ther. Adv. Musculoskelet Dis. 2015, 7, 225−233.  doi: 10.1177/1759720X15599734

    2. [2]

      Punzi, L.; Scanu, A.; Ramonda, R.; Oliviero, F. Gout as autoinflammatory disease: new mechanisms for more appropriated treatment targets. Autoimmun Rev. 2012, 12, 66−71.  doi: 10.1016/j.autrev.2012.07.024

    3. [3]

      Terkeltaub, R.; Bushinsky, D. A.; Becker, M. A. Recent developments in our understanding of the renal basis of hyperuricemia and the development of novel antihyperuricemic therapeutics. Arthritis Res. Ther. 2006, 8, 1−4.

    4. [4]

      Tan, P. K.; Farrar, J. E.; Gaucher, E. A.; Miner, J. N. Coevolution of URAT1 and uricase during primate evolution: implications for serum urate homeostasis and gout. Mol. Biol. Evol. 2016, 33, 2193−2200.  doi: 10.1093/molbev/msw116

    5. [5]

      Forcet, C.; Stein, E.; Pays, L.; Corset, V.; Llambi, F.; Tessier-Lavigne, M.; Mehlen, P. Netrin-1 mediated axon outgrowth requires deleted in colorectal cancer-dependent MAPK activation. Nature 2002, 417, 443−447.  doi: 10.1038/nature748

    6. [6]

      Hoy, S. M. Lesinurad: first global approval. Drugs 2016, 76, 509−516.  doi: 10.1007/s40265-016-0550-y

    7. [7]

      Tan, P. K.; Liu, S.; Gunic, E.; Miner, J. N. Discovery and characterization of verinurad, a potent and specific inhibitor of URAT1 for the treatment of hyperuricemia and gout. Sci. Rep. 2017, 7, 665−676.  doi: 10.1038/s41598-017-00706-7

    8. [8]

      Poiley, J.; Steinberg, A. S.; Choi, Y. J.; Davis, C. S.; Martin, R. L.; McWherter, C. A.; Boudes, P. F. A randomized, double-blind, active- and placebo-controlled efficacy and safety study of arhalofenate for reducing flare in patients with gout. Arthritis Rheumatol. 2016, 68, 2027−2034.  doi: 10.1002/art.39684

    9. [9]

      Edwards, N. L.; So, A. Emerging therapies for gout. Rheum. Dis. Clin. N. Am. 2014, 40, 375−387.  doi: 10.1016/j.rdc.2014.01.013

    10. [10]

      Mandal, A. K.; Mercado, A.; Foster, A.; Zandi-Nejad, K.; Mount, D. B. Uricosuric targets of tranilast. Pharmacol Res. Perspect. 2017, 5, 291−301.

    11. [11]

      Pan, Y.; Kong, L. D. Urate transporter URAT1 inhibitors: a patent review (2012-2015). Expert Opin. Ther. 2016, 26, 1129−1138.  doi: 10.1080/13543776.2016.1213243

    12. [12]

      Peng, J.; Hu, Q.; Gu, C.; Liu, B.; Jin, F.; Yuan, J.; Feng, J.; Zhang, L.; Lan, J.; Dong, Q.; Cao, G. Discovery of potent and orally bioavailable inhibitors of human uric acid transporter 1 (hURAT1) and binding mode prediction using homology model. Bioorg. Med. Chem. Lett. 2016, 26, 277−282.  doi: 10.1016/j.bmcl.2015.12.040

    13. [13]

      Cai, W.; Liu, W.; Zhang, S.; Wang, J.; Zhao, G. Design, synthesis and bioactivity of highly sterically congested flexible uric acid transporter 1 (URAT1) inhibitors. Chin. J. Org. Chem. 2017, 37, 2303−2314.  doi: 10.6023/cjoc201704038

    14. [14]

      Tian, H.; Liu, W.; Zhou, Z.; Shang, Q.; Liu, Y.; Xie, Y.; Liu, C.; Xu, W.; Tang, L.; Wang, J.; Zhao, G. Discovery of a flexible triazolylbutanoic acid as a highly potent uric acid transporter 1 (URAT1) inhibitor. Molecules 2016, 21, 1543−1548.  doi: 10.3390/molecules21111543

    15. [15]

      Cai, W.; Liu, W.; Xie, Y.; Wu, J.; Liu, Y.; Liu, C.; Xu, W.; Tang, L.; Wang, J.; Zhao, G. Design, synthesis and biological activity of tetrazole-bearing uric acid transporter 1 inhibitors. Chem. Res. Chin. U. 2017, 33, 49−60.  doi: 10.1007/s40242-017-6351-3

    16. [16]

      Peng, J.; Hu, Q.; Gu, C.; Liu, B.; Jin, F.; Yuan, J.; Feng, J.; Zhang, L.; Lan, J.; Dong, Q. Discovery of potent and orally bioavailable inhibitors of human uric acid transporter 1 (hURAT1) and binding mode prediction using homology model. Bioorg. Med. Chem. Lett. 2016, 26, 277−282.  doi: 10.1016/j.bmcl.2015.12.040

    17. [17]

      Cramer, R. D. Topomer CoMFA: a design methodology for rapid lead optimization. J. Med. Chem. 2003, 46, 374−388.  doi: 10.1021/jm020194o

    18. [18]

      Xu, C.; Ren, Y. Molecular modeling studies of [6, 6, 5] tricyclic fused oxazolidinones as fxa inhibitors using 3D-QSAR, topomer CoMFA, molecular docking and molecular dynamics simulations. Bioorg. Med. Chem. Lett. 2015, 25, 4522−4528.  doi: 10.1016/j.bmcl.2015.08.070

    19. [19]

      Halder, A. K.; Amin, S. A.; Jha, T.; Gayen, S. Insight into the structural requirements of pyrimidine-based phosphodiesterase 10A (PDE10A) inhibitors by multiple validated 3D-QSAR approaches. SAR QSAR Environ. Res. 2017, 28, 253−273.  doi: 10.1080/1062936X.2017.1302991

    20. [20]

      Zhao, T. T.; Zhao, Z. A.; Lu, F. T.; Chang, S.; Zhang, J. J.; Pang, J. X.; Tian, Y. X. Two- and three-dimensional QSAR studies on hURAT1 inhibitors with flexible linkers: topomer CoMFA and HQSAR. Mol. Divers. 2019.https://doi.org/10.1007/s11030-019-09936-5  doi: 10.1007/s11030-019-09936-5

    21. [21]

      Leonard, J. T.; Roy, K. On Selection of training and test sets for the development of predictive QSAR models. QSAR Comb. Sci. 2006, 25, 235−251.  doi: 10.1002/qsar.200510161

    22. [22]

      Li, S.; Li, M.; Chao, R.; Dong, C.; Jun, M.; Jing, C.; Tai, L.; Qing, L. 3D-QSAR studies on 4-([1, 2, 4]triazolo[1, 5-α]pyridin-6-yl)-5(3)-(6-methylpyridin-2-yl)imidazole analogues as potent inhibitors of transforming growth factor-β typeⅠreceptor kinase. Chin. J. Struct. Chem. 2018, 37, 517−530.

    23. [23]

      Xiao, C.; Yu, M.; Zhong, Z.; Ling, Z.; Ying, L. Molecular docking, 3D-QSAR and molecular dynamics simulation studies of substituted pyrimidines as selective covalent janus kinase 3 inhibitors. Chin. J. Struct. Chem. 2018, 37, 839−853.

    24. [24]

      Lu, W.; Yan, Z.; Shuai, L.; Ya, C.; Tao, L.; Hai, L. Molecular docking and 3D-QSAR studies on a series of fused heterocyclic amides as B-Raf inhibitors. Chin. J. Struct. Chem. 2017, 36, 1568−1585.

    25. [25]

      Xiang, Y.; Hou, Z.; Zhang, Z. Pharmacophore and qsar studies to design novel histone deacetylase 2 inhibitors. Chem. Biol. Drug Des. 2012, 79, 760−770.  doi: 10.1111/j.1747-0285.2012.01341.x

    26. [26]

      Yang, Q.; Zhang, S. P.; Zhao, S. P. 3D-QSAR studies on a series of indoleamide derivatives as antiplasmodial drugs. Chin. J. Struct. Chem. 2018, 37, 1015−1024.

    27. [27]

      Cramer, R. D. 3rd. Patterson, D. E.; Bunce, J. D. Recent advances in comparative molecular field analysis (CoMFA). Pro. Clin. Biol. Res. 1989, 291, 161−165.

    28. [28]

      Golbraikh, A.; Tropsha, A. Beware of q2. J. Mol. Grap. Model. 2002, 20, 269−276.  doi: 10.1016/S1093-3263(01)00123-1

    29. [29]

      Vrontaki, E.; Melagraki, G.; Mavromoustakos, T.; Afantitis, A. Searching for anthranilic acid-based thumb pocket 2 HCV NS5B polymerase inhibitors through a combination of molecular docking, 3D-QSAR and virtual screening. J. Enzym Inhib. Med. Ch. 2016, 31, 38−52.

    30. [30]

      Hao, C. Z.; Xia, S. W.; Wang, H.; Xue, J.; Yu, L. M. Using 3D-QSAR and molecular docking insight into inhibitors binding with complex-associated kinases CDK8. J. Mol. Struct. 2018, 1173, 498−511.  doi: 10.1016/j.molstruc.2018.05.072

    31. [31]

      Roy, K.; Kar, S. The rm2 metrics and regression through origin approach: reliable and useful validation tools for predictive QSAR models (commentary on 'is regression through origin useful in external validation of QSAR models?'). Eur. J. Pharm. Sci. 2014, 62, 111−114.  doi: 10.1016/j.ejps.2014.05.019

  • 加载中
    1. [1]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    2. [2]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    3. [3]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

    4. [4]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    5. [5]

      Huan Hu Ying Zhang Shi-Shuang Huang Zhi-Gang Li Yungui Liu Rui Feng Wei Li . Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide. Chinese Journal of Structural Chemistry, 2024, 43(10): 100395-100395. doi: 10.1016/j.cjsc.2024.100395

    6. [6]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    7. [7]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    8. [8]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    9. [9]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    10. [10]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    11. [11]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    12. [12]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    13. [13]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    14. [14]

      Yi ZhuJingyan ZhangYuchao ZhangYing ChenGuanghui AnRen Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573

    15. [15]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

    16. [16]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    17. [17]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    18. [18]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    19. [19]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    20. [20]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

Metrics
  • PDF Downloads(1)
  • Abstract views(185)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return