Citation: Bin WANG, Ting-Hai MU, Jun-Rong LING, You-Fu ZHOU, Wen-Tao XU, He LIN. Doping Effect of Bi3+ on the Properties of YAG: Ce3+, Mn2+ Phosphor Ceramics for Warm WLEDs[J]. Chinese Journal of Structural Chemistry, ;2020, 39(3): 511-518. doi: 10.14102/j.cnki.0254-5861.2011-2452 shu

Doping Effect of Bi3+ on the Properties of YAG: Ce3+, Mn2+ Phosphor Ceramics for Warm WLEDs

  • Corresponding author: You-Fu ZHOU, yfzhou@fjirsm.ac.cn
  • Received Date: 9 May 2019
    Accepted Date: 27 June 2019

    Fund Project: the grants of CAS Priority Research program XDB20010300the grants of CAS Priority Research program XDA21010204Natural Science Foundation of Fujian Province 2017H0048

Figures(11)

  • A series of Bi3+-doped YAG: Ce3+, Mn2+ ceramics was synthesized successfully by gel-casting method and structurally characterized by XRD and SEM. The doping effect and related mechanism of Bi3+ upon the luminescent property were studied. It can be assigned to the energy transfer of multipolar interaction from Bi3+ to Ce3+, leading to the improvement of emission intensity about 58% for 0.0001 Bi3+ and 0.05 Mn2+ doping. In addition, the emission is significantly red-shifted with the peak at 590 nm for the Y2.9939Ce0.006Bi0.0001Al4.96Mn0.02Si0.02O12 ceramic specimen with in-line transmittance 81.6% at 1100 nm. The LED module assembled from Y2.9939Ce0.006Bi0.0001Al4.96Mn0.02Si0.02O12 ceramic owns correlated color temperature (CCT) of 3960 K and luminous efficiency (LE) of 92 lm/W, implying that doping Bi3+ shows a good sensitization effect in the YAG: Ce3+, Mn2+ ceramic system and further serving as an attracting phosphor candidates for warm WLEDs applications.
  • 加载中
    1. [1]

      Sun, Y.; Qin, X. P.; Zhou, G. H.; Zhang, H. L.; Peng, X.; Wang, S. W. Gelcasting and reactive sintering of sheet-like YAG transparent ceramics. J. Alloys Comp. 2015, 652, 250–253.  doi: 10.1016/j.jallcom.2015.08.212

    2. [2]

      Ikesue, A.; Kinoshita, T.; Kamata, K.; Yoshida, K. Fabrication and optical-properties of high-performance polycrystalline Nd: YAG ceramics for solid-state lasers. J. Am. Ceram. Soc. 1995, 78, 1033–1040.  doi: 10.1111/j.1151-2916.1995.tb08433.x

    3. [3]

      Tachiwaki, T.; Yoshinaka, M.; Hirota, K.; Ikegami, T.; Yamaguchi, O. Novel synthesis of Y3Al5O12 (YAG) leading to transparent ceramics. Solid State Commun. 2001, 119, 603–606.  doi: 10.1016/S0038-1098(01)00293-9

    4. [4]

      Jiang, L. I.; Yusong, W. U.; Yubai, P. A. N.; Yong, Z. H. U.; Jingkun, G. U. O. Spectroscopic properties of Cr4+, Nd3+: YAG transparent ceramics for self-Q-switched laser. Chin. J. Lumin. 2007, 28, 219–224.

    5. [5]

      Wu, Y. S.; Li, J.; Pan, Y. B.; Guo, J. K.; Jiang, B. X.; Xu, Y.; Xu, J. Diode-pumped Yb: YAG ceramic laser. J. Am. Ceram. Soc. 2007, 90, 3334–3337.  doi: 10.1111/j.1551-2916.2007.01885.x

    6. [6]

      Huie, J. C.; Dudding, C. B.; McCloy, J. Polycrystalline yttrium aluminum Garnet (YAG) for IR transparent missile domes and windows. Proc. of SPIE 2007, 6545: 65450E1–65450E12.  doi: 10.1117/12.740783

    7. [7]

      Zhang, W. X.; Pan, Y. B.; Zhou, J.; Liu, W. B.; Li, J.; Jiang, B. X.; Cheng, X. J.; Xu, J. Q. Diode-pumped Tm: YAG ceramic laser. J. Am. Ceram. Soc. 2009, 92, 2434–2437.  doi: 10.1111/j.1551-2916.2009.03220.x

    8. [8]

      Zhang, M.; Liang, Y.; Tang, R.; Yu, D.; Tong, M.; Wang, Q.; Zhu, Y.; Wu, X.; Li, G. Highly efficient Sr3Y2(Si3O9)2: Ce3+, Tb3+/Mn2+/Eu2+ phosphors for white LEDs: structure refinement, color tuning and energy transfer. RSC Adv. 2014, 4, 40626–40637.  doi: 10.1039/C4RA06538G

    9. [9]

      Silveira, L. G. D.; Cotica, L. F.; Santos, I. A.; Belancon, M. P.; Rohling, J. H.; Baesso, M. L. Processing and luminescence properties of Ce: Y3Al5O12 and Eu: Y3Al5O12 ceramics for white-light applications. Mater. Lett. 2012, 89, 86–89.  doi: 10.1016/j.matlet.2012.08.106

    10. [10]

      Samuel, P.; Kumar, G. A.; Yanagitani, T.; Yagi, H.; Ueda, K. I.; Babu, S. M. Efficient energy transfer between Ce3+/Cr3+ and Nd3+ ions in transparent Nd/Ce/Cr: YAG ceramics. Opt. Mater. 2011, 34, 303–307.  doi: 10.1016/j.optmat.2011.09.002

    11. [11]

      Liu, J.; Sun, J.; Shi, C. The development of the white converter based on LED. Chemistry 2005, 68, 417–424.

    12. [12]

      Setlur, A. A.; Heward, W. J.; Gao, Y.; Srivastava, A. M.; Chandran, R. G.; Shankar, M. V. Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si, Ge)3O12 and its use in LED based lighting. Chem. Mater. 2006, 18, 3314–3322.  doi: 10.1021/cm060898c

    13. [13]

      Suehiro, T.; Hirosaki, N.; Xie, R. J. Synthesis and photoluminescent properties of (La, Ca)3Si6N11: Ce3+ fine powder phosphors for solid-state lighting. Acs Appl. Mater. Inter. 2011, 3, 811–816.  doi: 10.1021/am101160e

    14. [14]

      Zhu, H.; Lin, C. C.; Luo, W.; Shu, S.; Liu, Z.; Liu, Y.; Kong, J.; Ma, E.; Cao, Y.; Liu, R. S.; Chen, X. Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes. Nature Commun. 2014, 5, 1–10.

    15. [15]

      Guo, N.; Huang, Y. J.; You, H. P.; Yang, M.; Song, Y. H.; Liu, K.; Zheng, Y. H. Ca9Lu(PO4)7: Eu2+, Mn2+: a potential single-phased white-light-emitting phosphor suitable for white-light-emitting diodes. Inorg. Chem. 2010, 49, 10907–10913.  doi: 10.1021/ic101749g

    16. [16]

      Omatete, O. O.; Janney, M. A.; Strehlow, R. A. Gelcasting - a new ceramic forming process. Am. Ceram. Soc. Bull. 1991, 70, 1641–1649.

    17. [17]

      Omatete, O. O.; Janney, M. A.; Nunn, S. D. Gelcasting: from laboratory development toward industrial production. J. Eur. Ceram. Soc. 1997, 17, 407–413.  doi: 10.1016/S0955-2219(96)00147-1

    18. [18]

      Yang, J.; Yu, J.; Huang, Y. Recent developments in gelcasting of ceramics. J. Eur. Ceram. Soc. 2011, 31, 2569–2591.  doi: 10.1016/j.jeurceramsoc.2010.12.035

    19. [19]

      Que, M.; Que, W.; Zhou, T.; Shao, J.; Kong, L. Photoluminescence and energy transfer of YAG: Ce3+, Gd3+, Bi3+. J. Adv. Dielectr. 2016, 06, 1650029-1-1650029-6.  doi: 10.1142/S2010135X16500296

    20. [20]

      Nguyen Huu Khanh, N.; Tran Hoang Quang, M.; Nguyen, T. N.; Voznak, M. Bi-layers red-emitting Sr2Si5N8: Eu2+ phosphor and yellow-emitting YAG: Ce phosphor: a new approach for improving the color rendering index of the remote phosphor packaging WLEDs. Curr. Opt. Photonics 2017, 1, 613–617.

    21. [21]

      Sun, X. W.; Tan, J.; Li, C. M.; Lei, T.; Meng, X. K.; Yan, W.; Zhang, W.; Feng, S. Doping effects of Sb, Bi, Zr and Si on the properties of YAG: Ce phosphor. Chin. J. Inorg. Chem. 2013, 29, 1863–1869.

    22. [22]

      Zorenko, Y.; Gorbenko, V.; Savchyn, V.; Zorenko, T.; Nikl, M.; Mares, J. A.; Beitlerova, A.; Jary, V. Bi3+-Pr3+ energy transfer processes and luminescent properties of LuAG: Bi, Pr and YAG: Bi, Pr single crystalline films. J. Lumin. 2013, 141, 137–143.  doi: 10.1016/j.jlumin.2013.03.036

    23. [23]

      Wei, N. A.; Guan, Y. B.; Wu, H. J.; Lu, Z. W.; Chen, X. T.; Zhao, Y.; Qi, J. Q.; Lu, T. C.; Zhang, W.; Ma, B. Y. Fabrication of Yb3+-doped YAG transparent ceramics by aqueous gelcasting. J. Sol-Gel Sci. Technol. 2016, 77, 211–217.  doi: 10.1007/s10971-015-3846-6

    24. [24]

      Jia, Y. C.; Huang, Y. J.; Zheng, Y. H.; Guo, N.; Qiao, H.; Zhao, Q.; Lv, W. Z.; You, H. P. Color point tuning of Y3Al5O12: Ce3+ phosphor via Mn2+-Si4+ incorporation for white light generation. J. Mater. Chem. 2012, 22, 15146–15152.  doi: 10.1039/c2jm32233a

    25. [25]

      Bonin, K. D.; Kadarkallen, M. A. Linear electric-dipole polarizabilities. Int. J. Mod. Phys. 1994, 8, 3313–3370.  doi: 10.1142/S0217979294001391

    26. [26]

      Noginov, M. A.; Loutts, G. B.; Warren, M. Spectroscopic studies of Mn3+ and Mn2+ ions in YAlO3. J. Opt. Soc. Am. B 1999, 16, 475–483.

    27. [27]

      Gedam, S. C.; Dhoble, S. J.; Moharil, S. V. Dy3+ and Mn2+ emission in KMgSO4Cl phosphor. J. Lumin. 2007, 124, 120–126.  doi: 10.1016/j.jlumin.2006.02.016

    28. [28]

      Zhang, Z. M.; Liang, X. J.; Zhao, B. Y.; Chen, Z. P.; Liu, B. F.; Zhong, J. S.; Xiang, W. D.; Lu, C. Y. Growth and luminescence properties of Ce, Mn: YAG single crystal. Chem. Chem. J. Chin. U. 2013, 34, 1826–1832.

    29. [29]

      Shi, Y. R.; Wang, Y. H.; Wen, Y.; Zhao, Z. Y.; Liu, B. T.; Yang, Z. G. Tunable luminescence Y3Al5O12: 0.06Ce3+, xMn2+ phosphors with different charge compensators for warm white light emitting diodes. Opt. Express 2012, 20, 21656–21664.  doi: 10.1364/OE.20.021656

  • 加载中
    1. [1]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    2. [2]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    3. [3]

      Mingxin SongLijing XieFangyuan SuZonglin YiQuangui GuoCheng-Meng Chen . New insights into the effect of hard carbons microstructure on the diffusion of sodium ions into closed pores. Chinese Chemical Letters, 2024, 35(6): 109266-. doi: 10.1016/j.cclet.2023.109266

    4. [4]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    5. [5]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    6. [6]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    7. [7]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    8. [8]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    9. [9]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    10. [10]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    11. [11]

      Yongjing DengFeiyang LiZijian ZhouMengzhu WangYongkang ZhuJianwei ZhaoShujuan LiuQiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085

    12. [12]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    13. [13]

      Yue Mao Zhonghang Chen Tiankai Sun Wenyue Cui Peng Cheng Wei Shi . Luminescent coordination polymers with mixed carboxylate and triazole ligands for rapid detection of chloroprene metabolite. Chinese Journal of Structural Chemistry, 2024, 43(9): 100353-100353. doi: 10.1016/j.cjsc.2024.100353

    14. [14]

      Shunshun JiangJi ZhangJing WangShan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955

    15. [15]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    16. [16]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    17. [17]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    18. [18]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    19. [19]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    20. [20]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

Metrics
  • PDF Downloads(2)
  • Abstract views(190)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return