Citation: Bin WANG, Ting-Hai MU, Jun-Rong LING, You-Fu ZHOU, Wen-Tao XU, He LIN. Doping Effect of Bi3+ on the Properties of YAG: Ce3+, Mn2+ Phosphor Ceramics for Warm WLEDs[J]. Chinese Journal of Structural Chemistry, ;2020, 39(3): 511-518. doi: 10.14102/j.cnki.0254-5861.2011-2452 shu

Doping Effect of Bi3+ on the Properties of YAG: Ce3+, Mn2+ Phosphor Ceramics for Warm WLEDs

  • Corresponding author: You-Fu ZHOU, yfzhou@fjirsm.ac.cn
  • Received Date: 9 May 2019
    Accepted Date: 27 June 2019

    Fund Project: the grants of CAS Priority Research program XDB20010300the grants of CAS Priority Research program XDA21010204Natural Science Foundation of Fujian Province 2017H0048

Figures(11)

  • A series of Bi3+-doped YAG: Ce3+, Mn2+ ceramics was synthesized successfully by gel-casting method and structurally characterized by XRD and SEM. The doping effect and related mechanism of Bi3+ upon the luminescent property were studied. It can be assigned to the energy transfer of multipolar interaction from Bi3+ to Ce3+, leading to the improvement of emission intensity about 58% for 0.0001 Bi3+ and 0.05 Mn2+ doping. In addition, the emission is significantly red-shifted with the peak at 590 nm for the Y2.9939Ce0.006Bi0.0001Al4.96Mn0.02Si0.02O12 ceramic specimen with in-line transmittance 81.6% at 1100 nm. The LED module assembled from Y2.9939Ce0.006Bi0.0001Al4.96Mn0.02Si0.02O12 ceramic owns correlated color temperature (CCT) of 3960 K and luminous efficiency (LE) of 92 lm/W, implying that doping Bi3+ shows a good sensitization effect in the YAG: Ce3+, Mn2+ ceramic system and further serving as an attracting phosphor candidates for warm WLEDs applications.
  • 
    1. [1]

      Sun, Y.; Qin, X. P.; Zhou, G. H.; Zhang, H. L.; Peng, X.; Wang, S. W. Gelcasting and reactive sintering of sheet-like YAG transparent ceramics. J. Alloys Comp. 2015, 652, 250–253.  doi: 10.1016/j.jallcom.2015.08.212

    2. [2]

      Ikesue, A.; Kinoshita, T.; Kamata, K.; Yoshida, K. Fabrication and optical-properties of high-performance polycrystalline Nd: YAG ceramics for solid-state lasers. J. Am. Ceram. Soc. 1995, 78, 1033–1040.  doi: 10.1111/j.1151-2916.1995.tb08433.x

    3. [3]

      Tachiwaki, T.; Yoshinaka, M.; Hirota, K.; Ikegami, T.; Yamaguchi, O. Novel synthesis of Y3Al5O12 (YAG) leading to transparent ceramics. Solid State Commun. 2001, 119, 603–606.  doi: 10.1016/S0038-1098(01)00293-9

    4. [4]

      Jiang, L. I.; Yusong, W. U.; Yubai, P. A. N.; Yong, Z. H. U.; Jingkun, G. U. O. Spectroscopic properties of Cr4+, Nd3+: YAG transparent ceramics for self-Q-switched laser. Chin. J. Lumin. 2007, 28, 219–224.

    5. [5]

      Wu, Y. S.; Li, J.; Pan, Y. B.; Guo, J. K.; Jiang, B. X.; Xu, Y.; Xu, J. Diode-pumped Yb: YAG ceramic laser. J. Am. Ceram. Soc. 2007, 90, 3334–3337.  doi: 10.1111/j.1551-2916.2007.01885.x

    6. [6]

      Huie, J. C.; Dudding, C. B.; McCloy, J. Polycrystalline yttrium aluminum Garnet (YAG) for IR transparent missile domes and windows. Proc. of SPIE 2007, 6545: 65450E1–65450E12.  doi: 10.1117/12.740783

    7. [7]

      Zhang, W. X.; Pan, Y. B.; Zhou, J.; Liu, W. B.; Li, J.; Jiang, B. X.; Cheng, X. J.; Xu, J. Q. Diode-pumped Tm: YAG ceramic laser. J. Am. Ceram. Soc. 2009, 92, 2434–2437.  doi: 10.1111/j.1551-2916.2009.03220.x

    8. [8]

      Zhang, M.; Liang, Y.; Tang, R.; Yu, D.; Tong, M.; Wang, Q.; Zhu, Y.; Wu, X.; Li, G. Highly efficient Sr3Y2(Si3O9)2: Ce3+, Tb3+/Mn2+/Eu2+ phosphors for white LEDs: structure refinement, color tuning and energy transfer. RSC Adv. 2014, 4, 40626–40637.  doi: 10.1039/C4RA06538G

    9. [9]

      Silveira, L. G. D.; Cotica, L. F.; Santos, I. A.; Belancon, M. P.; Rohling, J. H.; Baesso, M. L. Processing and luminescence properties of Ce: Y3Al5O12 and Eu: Y3Al5O12 ceramics for white-light applications. Mater. Lett. 2012, 89, 86–89.  doi: 10.1016/j.matlet.2012.08.106

    10. [10]

      Samuel, P.; Kumar, G. A.; Yanagitani, T.; Yagi, H.; Ueda, K. I.; Babu, S. M. Efficient energy transfer between Ce3+/Cr3+ and Nd3+ ions in transparent Nd/Ce/Cr: YAG ceramics. Opt. Mater. 2011, 34, 303–307.  doi: 10.1016/j.optmat.2011.09.002

    11. [11]

      Liu, J.; Sun, J.; Shi, C. The development of the white converter based on LED. Chemistry 2005, 68, 417–424.

    12. [12]

      Setlur, A. A.; Heward, W. J.; Gao, Y.; Srivastava, A. M.; Chandran, R. G.; Shankar, M. V. Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si, Ge)3O12 and its use in LED based lighting. Chem. Mater. 2006, 18, 3314–3322.  doi: 10.1021/cm060898c

    13. [13]

      Suehiro, T.; Hirosaki, N.; Xie, R. J. Synthesis and photoluminescent properties of (La, Ca)3Si6N11: Ce3+ fine powder phosphors for solid-state lighting. Acs Appl. Mater. Inter. 2011, 3, 811–816.  doi: 10.1021/am101160e

    14. [14]

      Zhu, H.; Lin, C. C.; Luo, W.; Shu, S.; Liu, Z.; Liu, Y.; Kong, J.; Ma, E.; Cao, Y.; Liu, R. S.; Chen, X. Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes. Nature Commun. 2014, 5, 1–10.

    15. [15]

      Guo, N.; Huang, Y. J.; You, H. P.; Yang, M.; Song, Y. H.; Liu, K.; Zheng, Y. H. Ca9Lu(PO4)7: Eu2+, Mn2+: a potential single-phased white-light-emitting phosphor suitable for white-light-emitting diodes. Inorg. Chem. 2010, 49, 10907–10913.  doi: 10.1021/ic101749g

    16. [16]

      Omatete, O. O.; Janney, M. A.; Strehlow, R. A. Gelcasting - a new ceramic forming process. Am. Ceram. Soc. Bull. 1991, 70, 1641–1649.

    17. [17]

      Omatete, O. O.; Janney, M. A.; Nunn, S. D. Gelcasting: from laboratory development toward industrial production. J. Eur. Ceram. Soc. 1997, 17, 407–413.  doi: 10.1016/S0955-2219(96)00147-1

    18. [18]

      Yang, J.; Yu, J.; Huang, Y. Recent developments in gelcasting of ceramics. J. Eur. Ceram. Soc. 2011, 31, 2569–2591.  doi: 10.1016/j.jeurceramsoc.2010.12.035

    19. [19]

      Que, M.; Que, W.; Zhou, T.; Shao, J.; Kong, L. Photoluminescence and energy transfer of YAG: Ce3+, Gd3+, Bi3+. J. Adv. Dielectr. 2016, 06, 1650029-1-1650029-6.  doi: 10.1142/S2010135X16500296

    20. [20]

      Nguyen Huu Khanh, N.; Tran Hoang Quang, M.; Nguyen, T. N.; Voznak, M. Bi-layers red-emitting Sr2Si5N8: Eu2+ phosphor and yellow-emitting YAG: Ce phosphor: a new approach for improving the color rendering index of the remote phosphor packaging WLEDs. Curr. Opt. Photonics 2017, 1, 613–617.

    21. [21]

      Sun, X. W.; Tan, J.; Li, C. M.; Lei, T.; Meng, X. K.; Yan, W.; Zhang, W.; Feng, S. Doping effects of Sb, Bi, Zr and Si on the properties of YAG: Ce phosphor. Chin. J. Inorg. Chem. 2013, 29, 1863–1869.

    22. [22]

      Zorenko, Y.; Gorbenko, V.; Savchyn, V.; Zorenko, T.; Nikl, M.; Mares, J. A.; Beitlerova, A.; Jary, V. Bi3+-Pr3+ energy transfer processes and luminescent properties of LuAG: Bi, Pr and YAG: Bi, Pr single crystalline films. J. Lumin. 2013, 141, 137–143.  doi: 10.1016/j.jlumin.2013.03.036

    23. [23]

      Wei, N. A.; Guan, Y. B.; Wu, H. J.; Lu, Z. W.; Chen, X. T.; Zhao, Y.; Qi, J. Q.; Lu, T. C.; Zhang, W.; Ma, B. Y. Fabrication of Yb3+-doped YAG transparent ceramics by aqueous gelcasting. J. Sol-Gel Sci. Technol. 2016, 77, 211–217.  doi: 10.1007/s10971-015-3846-6

    24. [24]

      Jia, Y. C.; Huang, Y. J.; Zheng, Y. H.; Guo, N.; Qiao, H.; Zhao, Q.; Lv, W. Z.; You, H. P. Color point tuning of Y3Al5O12: Ce3+ phosphor via Mn2+-Si4+ incorporation for white light generation. J. Mater. Chem. 2012, 22, 15146–15152.  doi: 10.1039/c2jm32233a

    25. [25]

      Bonin, K. D.; Kadarkallen, M. A. Linear electric-dipole polarizabilities. Int. J. Mod. Phys. 1994, 8, 3313–3370.  doi: 10.1142/S0217979294001391

    26. [26]

      Noginov, M. A.; Loutts, G. B.; Warren, M. Spectroscopic studies of Mn3+ and Mn2+ ions in YAlO3. J. Opt. Soc. Am. B 1999, 16, 475–483.

    27. [27]

      Gedam, S. C.; Dhoble, S. J.; Moharil, S. V. Dy3+ and Mn2+ emission in KMgSO4Cl phosphor. J. Lumin. 2007, 124, 120–126.  doi: 10.1016/j.jlumin.2006.02.016

    28. [28]

      Zhang, Z. M.; Liang, X. J.; Zhao, B. Y.; Chen, Z. P.; Liu, B. F.; Zhong, J. S.; Xiang, W. D.; Lu, C. Y. Growth and luminescence properties of Ce, Mn: YAG single crystal. Chem. Chem. J. Chin. U. 2013, 34, 1826–1832.

    29. [29]

      Shi, Y. R.; Wang, Y. H.; Wen, Y.; Zhao, Z. Y.; Liu, B. T.; Yang, Z. G. Tunable luminescence Y3Al5O12: 0.06Ce3+, xMn2+ phosphors with different charge compensators for warm white light emitting diodes. Opt. Express 2012, 20, 21656–21664.  doi: 10.1364/OE.20.021656

    1. [1]

      Sun, Y.; Qin, X. P.; Zhou, G. H.; Zhang, H. L.; Peng, X.; Wang, S. W. Gelcasting and reactive sintering of sheet-like YAG transparent ceramics. J. Alloys Comp. 2015, 652, 250–253.  doi: 10.1016/j.jallcom.2015.08.212

    2. [2]

      Ikesue, A.; Kinoshita, T.; Kamata, K.; Yoshida, K. Fabrication and optical-properties of high-performance polycrystalline Nd: YAG ceramics for solid-state lasers. J. Am. Ceram. Soc. 1995, 78, 1033–1040.  doi: 10.1111/j.1151-2916.1995.tb08433.x

    3. [3]

      Tachiwaki, T.; Yoshinaka, M.; Hirota, K.; Ikegami, T.; Yamaguchi, O. Novel synthesis of Y3Al5O12 (YAG) leading to transparent ceramics. Solid State Commun. 2001, 119, 603–606.  doi: 10.1016/S0038-1098(01)00293-9

    4. [4]

      Jiang, L. I.; Yusong, W. U.; Yubai, P. A. N.; Yong, Z. H. U.; Jingkun, G. U. O. Spectroscopic properties of Cr4+, Nd3+: YAG transparent ceramics for self-Q-switched laser. Chin. J. Lumin. 2007, 28, 219–224.

    5. [5]

      Wu, Y. S.; Li, J.; Pan, Y. B.; Guo, J. K.; Jiang, B. X.; Xu, Y.; Xu, J. Diode-pumped Yb: YAG ceramic laser. J. Am. Ceram. Soc. 2007, 90, 3334–3337.  doi: 10.1111/j.1551-2916.2007.01885.x

    6. [6]

      Huie, J. C.; Dudding, C. B.; McCloy, J. Polycrystalline yttrium aluminum Garnet (YAG) for IR transparent missile domes and windows. Proc. of SPIE 2007, 6545: 65450E1–65450E12.  doi: 10.1117/12.740783

    7. [7]

      Zhang, W. X.; Pan, Y. B.; Zhou, J.; Liu, W. B.; Li, J.; Jiang, B. X.; Cheng, X. J.; Xu, J. Q. Diode-pumped Tm: YAG ceramic laser. J. Am. Ceram. Soc. 2009, 92, 2434–2437.  doi: 10.1111/j.1551-2916.2009.03220.x

    8. [8]

      Zhang, M.; Liang, Y.; Tang, R.; Yu, D.; Tong, M.; Wang, Q.; Zhu, Y.; Wu, X.; Li, G. Highly efficient Sr3Y2(Si3O9)2: Ce3+, Tb3+/Mn2+/Eu2+ phosphors for white LEDs: structure refinement, color tuning and energy transfer. RSC Adv. 2014, 4, 40626–40637.  doi: 10.1039/C4RA06538G

    9. [9]

      Silveira, L. G. D.; Cotica, L. F.; Santos, I. A.; Belancon, M. P.; Rohling, J. H.; Baesso, M. L. Processing and luminescence properties of Ce: Y3Al5O12 and Eu: Y3Al5O12 ceramics for white-light applications. Mater. Lett. 2012, 89, 86–89.  doi: 10.1016/j.matlet.2012.08.106

    10. [10]

      Samuel, P.; Kumar, G. A.; Yanagitani, T.; Yagi, H.; Ueda, K. I.; Babu, S. M. Efficient energy transfer between Ce3+/Cr3+ and Nd3+ ions in transparent Nd/Ce/Cr: YAG ceramics. Opt. Mater. 2011, 34, 303–307.  doi: 10.1016/j.optmat.2011.09.002

    11. [11]

      Liu, J.; Sun, J.; Shi, C. The development of the white converter based on LED. Chemistry 2005, 68, 417–424.

    12. [12]

      Setlur, A. A.; Heward, W. J.; Gao, Y.; Srivastava, A. M.; Chandran, R. G.; Shankar, M. V. Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si, Ge)3O12 and its use in LED based lighting. Chem. Mater. 2006, 18, 3314–3322.  doi: 10.1021/cm060898c

    13. [13]

      Suehiro, T.; Hirosaki, N.; Xie, R. J. Synthesis and photoluminescent properties of (La, Ca)3Si6N11: Ce3+ fine powder phosphors for solid-state lighting. Acs Appl. Mater. Inter. 2011, 3, 811–816.  doi: 10.1021/am101160e

    14. [14]

      Zhu, H.; Lin, C. C.; Luo, W.; Shu, S.; Liu, Z.; Liu, Y.; Kong, J.; Ma, E.; Cao, Y.; Liu, R. S.; Chen, X. Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes. Nature Commun. 2014, 5, 1–10.

    15. [15]

      Guo, N.; Huang, Y. J.; You, H. P.; Yang, M.; Song, Y. H.; Liu, K.; Zheng, Y. H. Ca9Lu(PO4)7: Eu2+, Mn2+: a potential single-phased white-light-emitting phosphor suitable for white-light-emitting diodes. Inorg. Chem. 2010, 49, 10907–10913.  doi: 10.1021/ic101749g

    16. [16]

      Omatete, O. O.; Janney, M. A.; Strehlow, R. A. Gelcasting - a new ceramic forming process. Am. Ceram. Soc. Bull. 1991, 70, 1641–1649.

    17. [17]

      Omatete, O. O.; Janney, M. A.; Nunn, S. D. Gelcasting: from laboratory development toward industrial production. J. Eur. Ceram. Soc. 1997, 17, 407–413.  doi: 10.1016/S0955-2219(96)00147-1

    18. [18]

      Yang, J.; Yu, J.; Huang, Y. Recent developments in gelcasting of ceramics. J. Eur. Ceram. Soc. 2011, 31, 2569–2591.  doi: 10.1016/j.jeurceramsoc.2010.12.035

    19. [19]

      Que, M.; Que, W.; Zhou, T.; Shao, J.; Kong, L. Photoluminescence and energy transfer of YAG: Ce3+, Gd3+, Bi3+. J. Adv. Dielectr. 2016, 06, 1650029-1-1650029-6.  doi: 10.1142/S2010135X16500296

    20. [20]

      Nguyen Huu Khanh, N.; Tran Hoang Quang, M.; Nguyen, T. N.; Voznak, M. Bi-layers red-emitting Sr2Si5N8: Eu2+ phosphor and yellow-emitting YAG: Ce phosphor: a new approach for improving the color rendering index of the remote phosphor packaging WLEDs. Curr. Opt. Photonics 2017, 1, 613–617.

    21. [21]

      Sun, X. W.; Tan, J.; Li, C. M.; Lei, T.; Meng, X. K.; Yan, W.; Zhang, W.; Feng, S. Doping effects of Sb, Bi, Zr and Si on the properties of YAG: Ce phosphor. Chin. J. Inorg. Chem. 2013, 29, 1863–1869.

    22. [22]

      Zorenko, Y.; Gorbenko, V.; Savchyn, V.; Zorenko, T.; Nikl, M.; Mares, J. A.; Beitlerova, A.; Jary, V. Bi3+-Pr3+ energy transfer processes and luminescent properties of LuAG: Bi, Pr and YAG: Bi, Pr single crystalline films. J. Lumin. 2013, 141, 137–143.  doi: 10.1016/j.jlumin.2013.03.036

    23. [23]

      Wei, N. A.; Guan, Y. B.; Wu, H. J.; Lu, Z. W.; Chen, X. T.; Zhao, Y.; Qi, J. Q.; Lu, T. C.; Zhang, W.; Ma, B. Y. Fabrication of Yb3+-doped YAG transparent ceramics by aqueous gelcasting. J. Sol-Gel Sci. Technol. 2016, 77, 211–217.  doi: 10.1007/s10971-015-3846-6

    24. [24]

      Jia, Y. C.; Huang, Y. J.; Zheng, Y. H.; Guo, N.; Qiao, H.; Zhao, Q.; Lv, W. Z.; You, H. P. Color point tuning of Y3Al5O12: Ce3+ phosphor via Mn2+-Si4+ incorporation for white light generation. J. Mater. Chem. 2012, 22, 15146–15152.  doi: 10.1039/c2jm32233a

    25. [25]

      Bonin, K. D.; Kadarkallen, M. A. Linear electric-dipole polarizabilities. Int. J. Mod. Phys. 1994, 8, 3313–3370.  doi: 10.1142/S0217979294001391

    26. [26]

      Noginov, M. A.; Loutts, G. B.; Warren, M. Spectroscopic studies of Mn3+ and Mn2+ ions in YAlO3. J. Opt. Soc. Am. B 1999, 16, 475–483.

    27. [27]

      Gedam, S. C.; Dhoble, S. J.; Moharil, S. V. Dy3+ and Mn2+ emission in KMgSO4Cl phosphor. J. Lumin. 2007, 124, 120–126.  doi: 10.1016/j.jlumin.2006.02.016

    28. [28]

      Zhang, Z. M.; Liang, X. J.; Zhao, B. Y.; Chen, Z. P.; Liu, B. F.; Zhong, J. S.; Xiang, W. D.; Lu, C. Y. Growth and luminescence properties of Ce, Mn: YAG single crystal. Chem. Chem. J. Chin. U. 2013, 34, 1826–1832.

    29. [29]

      Shi, Y. R.; Wang, Y. H.; Wen, Y.; Zhao, Z. Y.; Liu, B. T.; Yang, Z. G. Tunable luminescence Y3Al5O12: 0.06Ce3+, xMn2+ phosphors with different charge compensators for warm white light emitting diodes. Opt. Express 2012, 20, 21656–21664.  doi: 10.1364/OE.20.021656

  • 加载中
    1. [1]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    2. [2]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    3. [3]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    4. [4]

      Mingxin SongLijing XieFangyuan SuZonglin YiQuangui GuoCheng-Meng Chen . New insights into the effect of hard carbons microstructure on the diffusion of sodium ions into closed pores. Chinese Chemical Letters, 2024, 35(6): 109266-. doi: 10.1016/j.cclet.2023.109266

    5. [5]

      Zirui ZhuPeng LiuJinhua WangHongbin ZhangWei Luo . Effects of nano-metakaolin on the enhanced properties and microstructure development of natural hydraulic lime. Chinese Chemical Letters, 2025, 36(4): 109794-. doi: 10.1016/j.cclet.2024.109794

    6. [6]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    7. [7]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    8. [8]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    9. [9]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    10. [10]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenQiang SunShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoLi Wang . Recent progress on surface chemistry Ⅱ: Property and characterization. Chinese Chemical Letters, 2025, 36(1): 110100-. doi: 10.1016/j.cclet.2024.110100

    11. [11]

      Yixin LuMinghan QinShixian ZhangZhen LiuWang SunZhenhua WangJinshuo QiaoKening Sun . Triple-conducting heterostructure anodes for electrochemical ethane nonoxidative dehydrogenation by protonic ceramic electrolysis cells. Chinese Chemical Letters, 2025, 36(4): 110567-. doi: 10.1016/j.cclet.2024.110567

    12. [12]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    13. [13]

      Wenying CuiZhetong JinWentao FuChengshuo Shen . Flag-hinge-like highly luminescent chiral nanographenes with twist geometry. Chinese Chemical Letters, 2024, 35(11): 109667-. doi: 10.1016/j.cclet.2024.109667

    14. [14]

      Yongjing DengFeiyang LiZijian ZhouMengzhu WangYongkang ZhuJianwei ZhaoShujuan LiuQiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085

    15. [15]

      Zhenfei TangYunwu ZhangZhiyuan YangHaifeng YuanTong WuYue LiGuixiang ZhangXingzhi WangBin ChangDehui SunHong LiuLili ZhaoWeijia Zhou . Iron-doping regulated light absorption and active sites in LiTaO3 single crystal for photocatalytic nitrogen reduction. Chinese Chemical Letters, 2025, 36(3): 110107-. doi: 10.1016/j.cclet.2024.110107

    16. [16]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    17. [17]

      Yue Mao Zhonghang Chen Tiankai Sun Wenyue Cui Peng Cheng Wei Shi . Luminescent coordination polymers with mixed carboxylate and triazole ligands for rapid detection of chloroprene metabolite. Chinese Journal of Structural Chemistry, 2024, 43(9): 100353-100353. doi: 10.1016/j.cjsc.2024.100353

    18. [18]

      Chao LiuChao JiaShi-Xian GanQiao-Yan QiGuo-Fang JiangXin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750

    19. [19]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    20. [20]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

Metrics
  • PDF Downloads(2)
  • Abstract views(320)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return