Citation: Yan-Qiang LI, Jun-Hua LUO, Xiang-Hai JI, San-Gen ZHAO. A Short-wave UV Nonlinear Optical Sulfate of High Thermal Stability[J]. Chinese Journal of Structural Chemistry, ;2020, 39(3): 485-492. doi: 10.14102/j.cnki.0254-5861.2011-2447 shu

A Short-wave UV Nonlinear Optical Sulfate of High Thermal Stability

  • Corresponding author: San-Gen ZHAO, zhaosangen@fjirsm.ac.cn
  • Received Date: 6 May 2019
    Accepted Date: 24 July 2019

    Fund Project: the National Natural Science Foundation of China 21833010the National Natural Science Foundation of China 21571178the National Natural Science Foundation of China 21601188the National Natural Science Foundation of China 51872297the National Natural Science Foundation of China 51802321

Figures(5)

  • Compared with borates, carbonates, nitrates and phosphates, sulfates have been ignored as nonlinear optical (NLO) materials for a long time. Recently, researchers started to realize sulfates which have the potential as NLO materials, and synthesized some sulfate NLO materials by the water solution method and solvothermal method. However, all these sulfate NLO materials have the same problem of low thermal stability. Here, we synthesized a new Cs4Mg6(SO4)8, which crystallizes in the orthorhombic space group P212121 with a = 9.102, b = 9.955, c = 16.127 Å, V = 1461.3 Å3, Z = 2, F(000) = 1352, μ = 5.777 mm-1, R = 0.0213 and wR = 0.0480. The single crystal structure can be described as a three-dimensional framework constructed by MgO6 octahedra and SO4 tetrahedra. Relevant optical measurements indicate that Cs4Mg6(SO4)8 is short-wave ultraviolet transparent and has a moderate second harmonic generation response. Theoretical calculations by the CASTEP package reveal that S–O groups are NLO-active anionic groups. Significantly, Cs4Mg6(SO4)8 has high thermal stability up to 781 ℃ based on thermal analyses. We believe that our work will provide a new strategy for researchers to develop new sulfate short-wave ultraviolet NLO materials of high thermal stability.
  • 加载中
    1. [1]

      Cyranoski, D. Materials science: China's crystal cache. Nature 2009, 457, 953–955.  doi: 10.1038/457953a

    2. [2]

      Chen, C.; Wu, Y.; Jiang, A.; Wu, B.; You, G.; Li, R.; Lin, S. New nonlinear optical crystal: LiB3O5. J. Opt. Soc. Am. B 1989, 6, 616–621.  doi: 10.1364/JOSAB.6.000616

    3. [3]

      Chen, C.; Wu, B.; Jiang, A.; You, G. A new-type ultraviolet SHG crystal β-BaB2O4. Sci. Sin. B 1985, 28, 235–241.

    4. [4]

      De Yoreo, J. J.; Burnham, A. K.; Whitman, P. K. Developing KH2PO4 and KD2PO4 crystals for the world's most power laser. Int. Mater. Rev. 2002, 47, 113–152.  doi: 10.1179/095066001225001085

    5. [5]

      Chen, C. T.; Wang, G. L.; Wang, X. Y.; Xu, Z. Y. Deep-UV nonlinear optical crystal KBe2BO3F2-discovery, growth, optical properties and applications. Appl. Phys. B 2009, 97, 9–25.  doi: 10.1007/s00340-009-3554-4

    6. [6]

      Chen, C.; Wang, Y.; Wu, B.; Wu, K.; Zeng, W.; Yu, L. Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7. Nature 1995, 373, 322–324.  doi: 10.1038/373322a0

    7. [7]

      Huang, H. W.; Liu, L. J.; Jin, S. F.; Yao, W. J.; Zhang, Y. H.; Chen, C. T. Deep-ultraviolet nonlinear optical materials: Na2Be4B4O11 and LiNa5Be12B12O33. J. Am. Chem. Soc. 2013, 135, 18319–18322.  doi: 10.1021/ja410543w

    8. [8]

      Zhao, S.; Gong, P.; Bai, L.; Xu, X.; Zhang, S.; Sun, Z.; Lin, Z.; Hong, M.; Chen, C.; Luo, J. Beryllium-free Li4Sr(BO3)2 for deep-ultraviolet nonlinear optical applications. Nat. Commun. 2014, 5, 4019–4025.  doi: 10.1038/ncomms5019

    9. [9]

      Tran, T. T.; Koocher, N. Z.; Rondinelli, J. M.; Halasyamani, P. S. Beryllium-free beta-Rb2Al2B2O7 as a possible deep-ultraviolet nonlinear optical material replacement for KBe2BO3F2. Angew. Chem. Int. Ed. 2017, 56, 2969–2973.  doi: 10.1002/anie.201612236

    10. [10]

      Shi, G.; Wang, Y.; Zhang, F.; Zhang, B.; Yang, Z.; Hou, X.; Pan, S.; Poeppelmeier, K. R. Finding the next deep-ultraviolet nonlinear optical material: NH4B4O6F. J. Am. Chem. Soc. 2017, 139, 10645–10648.  doi: 10.1021/jacs.7b05943

    11. [11]

      Wang, X. F.; Wang, Y.; Zhang, B. B.; Zhang, F. F.; Yang, Z. H.; Pan, S. L. CsB4O6F: a congruent-melting deep-ultraviolet nonlinear optical material by combining superior functional units. Angew. Chem. Int. Ed. 2017, 56, 14119–14123.  doi: 10.1002/anie.201708231

    12. [12]

      Luo, M.; Fei, L.; Song, Y. X.; Zhao, D.; Xu, F.; Ye, N.; Lin, Z. S. M2B10O14F6 (M = Ca, Sr): two noncentrosymmetric alkaline earth fluorooxoborates as promising next-heneration deep-ultraviolet nonlinear optical materials. J. Am. Chem. Soc. 2018, 140, 6509–6509.  doi: 10.1021/jacs.8b04744

    13. [13]

      Zhang, Z. Z.; Wang, Y.; Zhang, B. B.; Yang, Z. H.; Pan, S. L. CaB5O7F3: a beryllium-free alkaline-earth fluorooxoborate exhibiting excellent nonlinear optical performances. Inorg. Chem. 2018, 57, 4820–4823.  doi: 10.1021/acs.inorgchem.8b00531

    14. [14]

      Zou, G.; Ye, N.; Huang, L.; Lin, X. Alkaline-alkaline earth fluoride carbonate crystals ABCO3F (A = K, Rb, Cs; B = Ca, Sr, Ba) as nonlinear optical materials. J. Am. Chem. Soc. 2011, 133, 20001–20007.  doi: 10.1021/ja209276a

    15. [15]

      Tran, T. T.; He, J. G.; Rondinelli, J. M.; Halasyamani, P. S. RbMgCO3F: a new beryllium-free deep-ultraviolet nonlinear optical material. J. Am. Chem. Soc. 2015, 137, 10504–10507.  doi: 10.1021/jacs.5b06519

    16. [16]

      Peng, G.; Lin, C. S.; Yang, Y.; Zhao, D.; Lin, Z.; Ye, N.; Huang, J. S. Y2(CO3)3·H2O and (NH4)2Ca2Y4(CO3)9·H2O: partial aliovalent cation substitution enabling evolution from centrosymmetry to noncentrosymmetry for nonlinear optical response. Chem. Mater. 2019, 31, 52–56.  doi: 10.1021/acs.chemmater.8b04428

    17. [17]

      Zou, G. H.; Lin, C. S.; Kim, H. G.; Jo, H.; Ok, K. M. Rb2Na(NO3)3: a congruently melting UV-NLO crystal with a very strong second-harmonic generation response. Crystals 2016, 6, 42–55.  doi: 10.3390/cryst6040042

    18. [18]

      Song, Y.; Luo, M.; Lin, C.; Ye, N. Structural modulation of nitrate group with cations to affect SHG responses in RE(OH)2NO3 (RE = La, Y, and Gd): new polar materials with large NLO effect after adjusting pH values of reaction systems. Chem. Mater. 2017, 29, 896–903.  doi: 10.1021/acs.chemmater.6b05119

    19. [19]

      Chen, J.; Xiong, L.; Chen, L.; Wu, L. M. Ba2NaCIP2O7: unprecedented phase matchability induced by symmetry breaking and its unique fresnoite-type structure. J. Am. Chem. Soc. 2018, 140, 14082–14086.  doi: 10.1021/jacs.8b10209

    20. [20]

      Yu, H.; Young, J.; Wu, H.; Zhang, W.; Rondinelli, J. M.; Halasyamani, P. S. M4Mg4(P2O7)3 (M = K, Rb): structural engineering of pyrophosphates for nonlinear optical applications. Chem. Mater. 2017, 29, 1845–1855.  doi: 10.1021/acs.chemmater.7b00167

    21. [21]

      Shen, Y. G.; Yang, Y.; Zhao, S. G.; Zhao, B. Q.; Lin, Z. S.; Ji, C. M.; Li, L. N.; Fu, P.; Hong, M. C.; Luo, J. H. Deep-ultraviolet transparent Cs2LiPO4 exhibits an unprecedented second harmonic generation. Chem. Mater. 2016, 28, 7110–7116.  doi: 10.1021/acs.chemmater.6b03333

    22. [22]

      Li, L.; Wang, Y.; Lei, B. H.; Han, S. J.; Yang, Z. H.; Poeppelmeier, K. R.; Pan, S. L. A new deep-ultraviolet transparent orthophosphate LiCs2PO4 with large second harmonic generation response. J. Am. Chem. Soc. 2016, 138, 9101–9104.  doi: 10.1021/jacs.6b06053

    23. [23]

      Zhao, S. G.; Gong, P. F.; Luo, S. Y.; Bai, L.; Lin, Z. S.; Tang, Y. Y.; Zhou, Y. L.; Hong, M. C.; Luo, J. H. Tailored synthesis of a nonlinear optical phosphate with a short absorption edge. Angew. Chem. Int. Ed. 2015, 54, 4217–4221.  doi: 10.1002/anie.201411772

    24. [24]

      Zhao, S. G.; Gong, P. F.; Luo, S. Y.; Bai, L.; Lin, Z. S.; Ji, C. M.; Chen, T. L.; Hong, M. C.; Luo, J. H. Deep-ultraviolet transparent phosphates RbBa2(PO3)5 and Rb2Ba3(P2O7)2 show nonlinear optical activity from condensation of [PO4]3- units. J. Am. Chem. Soc. 2014, 36, 8560–8563.

    25. [25]

      Yu, P.; Wu, L. M.; Zhou, L. J.; Chen, L. Deep-ultraviolet nonlinear optical crystals: Ba3P3O10X (X = Cl, Br). J. Am. Chem. Soc. 2014, 36, 480–487.

    26. [26]

      He, F.; Wang, Q.; Hu, C.; He, W.; Luo, X.; Huang, L.; Gao, D.; Bi, J.; Wang, X.; Zou, G. Centrosymmetric (NH4)2SbCl(SO4)2 and non-centrosymmetric (NH4)SbCl2(SO4): synergistic effect of hydrogen-bonding interactions and lone-pair cations on the framework structures and macroscopic centricities. Cryst. Growth Des. 2018, 8, 6239–6247.

    27. [27]

      Li, Y.; Zhao, S.; Shan, P.; Li, X.; Ding, Q.; Liu, S.; Wu, Z.; Wang, S.; Li, L.; Luo, J. Li8NaRb3(SO4)6·2H2O as a new sulfate deep-ultraviolet nonlinear optical material. J. Mater. Chem. C 2018, 6, 12240–12244.  doi: 10.1039/C8TC04361B

    28. [28]

      Li, Y.; Liang, F.; Zhao, S.; Li, L.; Wu, Z.; Ding, Q.; Liu, S.; Lin, Z.; Hong, M.; Luo, J. Two non-π-conjugated deep-UV nonlinear optical sulfates. J. Am. Chem. Soc. 2019, 141, 3833–3837.  doi: 10.1021/jacs.9b00138

    29. [29]

      Dong, X.; Huang, L.; Hu, C.; Zeng, H.; Lin, Z.; Wang, X.; Ok, K. M.; Zou, G. CsSbF2SO4: an excellent ultraviolet nonlinear optical sulfate with a KTiOPO4 (KTP)-type structure. Angew. Chem. Int. Ed. 2019, accepted.

    30. [30]

      SAINT A. APEX3 software for CCD Diffractometers. Bruker Analytical X-ray Systems Inc. Madison, WI 2014.

    31. [31]

      Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. Sect. A: Found. Crystallogr. 2008, 64, 112–122.  doi: 10.1107/S0108767307043930

    32. [32]

      Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003, 36, 7–13.  doi: 10.1107/S0021889802022112

    33. [33]

      Tauc, J. Absorption edge and internal electric fields in amorphous semiconductors. Mater. Res. Bull. 1970, 5, 721–729.  doi: 10.1016/0025-5408(70)90112-1

    34. [34]

      Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. Z. Kristallogr. 2005, 220, 567–570.

    35. [35]

      Rappe, A. M.; Rabe, K. M.; Kaxiras, E.; Joannopoulos, J. D. Optimized pseudopotentials. Phys. Rev. B 1990, 41, 1227–1230.  doi: 10.1103/PhysRevB.41.1227

  • 加载中
    1. [1]

      Rongliang DengYihang ChenXiaotong FanGuolong ChenShuli WangChangzhi YuXiao YangTingzhu WuZhong ChenYue Lin . Break of thermal equilibrium between optical and acoustic phonon branches of CsPbI3 under continuous-wave light excitation and cryogenic temperature. Chinese Chemical Letters, 2024, 35(7): 109346-. doi: 10.1016/j.cclet.2023.109346

    2. [2]

      Jiajing Wu Ru-Ling Tang Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291

    3. [3]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    4. [4]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    5. [5]

      Pu ZhangXiang MaoXuehua DongLing HuangLiling CaoDaojiang GaoGuohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235

    6. [6]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    7. [7]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    8. [8]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    9. [9]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    10. [10]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    11. [11]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    12. [12]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    13. [13]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    14. [14]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    15. [15]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    16. [16]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    17. [17]

      Peng ZhouZiang JiangYang LiPeng XiaoFeixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467

    18. [18]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    19. [19]

      Ting LiXinxin ZhengLejing QuYuanyuan OuSai QiaoXue ZhaoYajun ZhangXinfeng ZhaoQian Li . A chromatographic method for pursuing potential GPCR ligands with the capacity to characterize their intrinsic activities of regulating downstream signaling pathway. Chinese Chemical Letters, 2024, 35(10): 109792-. doi: 10.1016/j.cclet.2024.109792

    20. [20]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

Metrics
  • PDF Downloads(2)
  • Abstract views(455)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return