Citation: Jin-Fa YU, Min-Jie MAO, Hui-Ping LI, Xian-Bo ZHOU, Dan-Dan ZHANG, Jian-Xin CHEN, Zhi-Chun ZHANG. Synthesis, Characterization and Catalytic Activity of SalenCo(III)Cl in Alternating Copolymerization of CO2 and Propylene Oxide[J]. Chinese Journal of Structural Chemistry, ;2020, 39(1): 86-95. doi: 10.14102/j.cnki.0254-5861.2011-2352 shu

Synthesis, Characterization and Catalytic Activity of SalenCo(III)Cl in Alternating Copolymerization of CO2 and Propylene Oxide

  • Corresponding author: Jian-Xin CHEN, jxchen_1964@163.com
  • Received Date: 4 March 2019
    Accepted Date: 11 April 2019

    Fund Project: the Natural Science Foundation of Fujian Province 2010J01026the Ministry of Education of China 208066the Education Department of Fujian Province JA07029the State Key Laboratory of Structural Chemistry 20130013

Figures(12)

  • The title complex SalenCo(III)Cl (Salen = 6, 6'-((1E, 1'E)-(cyclohexane-1, 2-diylbis(azaneylylidene))bis(methaneylylidene))bis(2, 4-di-tert-butylphenol)) was synthesized and characterized by elemental analysis, IR spectroscopy, 1H NMR and UV-Vis. The complex can be used as catalyst for the propylene oxide (PO)/CO2 copolymerization in different conditions of reaction time, reaction temperature, carbon dioxide pressure and monomer concentration, and the optimum conditions for copolymerization were obtained.

    1. [1]

      Firouz, A. Q.; Torabi, F. Utilization of carbon dioxide and methane in huff- and -puff injection scheme to improve heavy oil recovery. Fuel 2014, 117, 966-973.  doi: 10.1016/j.fuel.2013.10.040

    2. [2]

      Perathoner, S.; Centi, G. CO2 recycling: a key strategy to introduce green energy in the chemical production chain. ChemSusChem. 2014, 7, 1274-1282.  doi: 10.1002/cssc.201300926

    3. [3]

      Chen, Q.; Lv, M.; Tang, Z. Y.; Wang, H.; Wei, W.; Sun, Y. H. Opportunities of integrated systems with CO2, utilization technologies for green fuel & chemicals production in a carbon-constrained society. J. CO2. Util. 2016, 14, 1-9.  doi: 10.1016/j.jcou.2016.01.004

    4. [4]

      Darensbourg, D. J.; Mackiewicz, R. M.; Phelps, A. L.; Damon, R. B. Copolymerization of CO2 and epoxides catalyzed by metal salen complexes. Acc. Chem. Res. 2004, 37, 836-844.  doi: 10.1021/ar030240u

    5. [5]

      Eberhardt, R.; Allmendinger, M.; Rieger, B. DMAP/Cr(III) catalyst ratio: the decisive factor for poly(propylene carbonate) formation in the coupling of CO2 and propylene oxide. Macromol. Rapid. Commun. 2010, 24, 194-196.

    6. [6]

      Rulev, Y. A.; Gugkaeva, Z.; Maleev, V. I.; Belokon, Y. N.; North, M. Robust bifunctional aluminium-salen catalysts for the preparation of cyclic carbonates from carbon dioxide and epoxides. Beilstein. J. Org. Chem. 2015, 11, 1614-1623.  doi: 10.3762/bjoc.11.176

    7. [7]

      Niu, Y. S.; Li, H. C. Silica supported Schiff-base cobalt(III) complex-Lewis base system: a highly selective catalyst for alternating copolymerization of CO2 and propylene oxide. E-Polymers 2011, 11, 55-62.
       

    8. [8]

      Darensbourg, D. J.; Yeung, A. D. Kinetics of the (salen)Cr(III) and (salen)Co(III) catalyzed copolymerization of epoxides with CO2, and of the accompanying degradation reactions. Poly. Chem. -UK. 2015, 6, 1103-1117.  doi: 10.1039/C4PY01322K

    9. [9]

      Jacobsen, E. N. Asymmetric catalysis of epoxide ring-opening reactions. Acc. Chem. Res. 2000, 33, 421-431.  doi: 10.1021/ar960061v

    10. [10]

      Liu, T. T.; Liang, J.; Xu, R.; Huang, Y. B.; Cao, R. Salen-Co(III) insertion in multivariate cationic metal-organic frameworks for the enhanced cycloaddition reaction of carbon dioxide. Chem. Commun. 2019, DOI: 10.1039/c8cc10268f.

    11. [11]

      Qin, Z.; Thomas, C. M.; Lee, S.; Coates, G. W. Cobalt-based complexes for the copolymerization of propylene oxide and CO2: active and selective catalysts for polycarbonate synthesis. Angew. Chem. Int. Ed. 2003, 42, 5484-5487.  doi: 10.1002/anie.200352605

    12. [12]

      Darensbourg, D. J. Making plastics from carbon dioxide: salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2. Chem. Rev. 2007, 38, 2388-2410.

    13. [13]

      Lednor, P. W.; Rol, N. C. Copolymerization of propene oxide with carbon dioxide: a selective incorporation of propene oxide into the polycarbonate chains, determined by 100 MHz 13C NMR spectroscopy. J. Chem. Soc. Chem. Commun. 1985, 9, 598-599.

    14. [14]

      Lu, B. Y.; Gao, Y. H.; Zhao, X.; Yan, W. D.; Wang, X. H. Alternating copolymerization of carbon dioxide and propylene oxide under bifunctional cobalt salen complexes: role of Lewis base substituent covalent bonded on salen ligand. J. Polym. Sci. Pol. Chem. 2010, 48, 359-365.  doi: 10.1002/pola.23792

    15. [15]

      Decortes, A.; Haak, R. M.; Martin, C.; Martin, E.; Belmonte, M. M.; Kleij, A. Copolymerization of CO2 and cyclohexene oxide mediated by Yb(salen)-based complexes. Macromolecules 2015, 48, 8197-8207.  doi: 10.1021/acs.macromol.5b01880

    16. [16]

      Kember, M. R.; Buchard, A.; Williams, C. K. Catalysts for CO2/epoxide copolymerisation. Chem. Commun. 2011, 47, 141-163.  doi: 10.1039/C0CC02207A

    1. [1]

      Firouz, A. Q.; Torabi, F. Utilization of carbon dioxide and methane in huff- and -puff injection scheme to improve heavy oil recovery. Fuel 2014, 117, 966-973.  doi: 10.1016/j.fuel.2013.10.040

    2. [2]

      Perathoner, S.; Centi, G. CO2 recycling: a key strategy to introduce green energy in the chemical production chain. ChemSusChem. 2014, 7, 1274-1282.  doi: 10.1002/cssc.201300926

    3. [3]

      Chen, Q.; Lv, M.; Tang, Z. Y.; Wang, H.; Wei, W.; Sun, Y. H. Opportunities of integrated systems with CO2, utilization technologies for green fuel & chemicals production in a carbon-constrained society. J. CO2. Util. 2016, 14, 1-9.  doi: 10.1016/j.jcou.2016.01.004

    4. [4]

      Darensbourg, D. J.; Mackiewicz, R. M.; Phelps, A. L.; Damon, R. B. Copolymerization of CO2 and epoxides catalyzed by metal salen complexes. Acc. Chem. Res. 2004, 37, 836-844.  doi: 10.1021/ar030240u

    5. [5]

      Eberhardt, R.; Allmendinger, M.; Rieger, B. DMAP/Cr(III) catalyst ratio: the decisive factor for poly(propylene carbonate) formation in the coupling of CO2 and propylene oxide. Macromol. Rapid. Commun. 2010, 24, 194-196.

    6. [6]

      Rulev, Y. A.; Gugkaeva, Z.; Maleev, V. I.; Belokon, Y. N.; North, M. Robust bifunctional aluminium-salen catalysts for the preparation of cyclic carbonates from carbon dioxide and epoxides. Beilstein. J. Org. Chem. 2015, 11, 1614-1623.  doi: 10.3762/bjoc.11.176

    7. [7]

      Niu, Y. S.; Li, H. C. Silica supported Schiff-base cobalt(III) complex-Lewis base system: a highly selective catalyst for alternating copolymerization of CO2 and propylene oxide. E-Polymers 2011, 11, 55-62.
       

    8. [8]

      Darensbourg, D. J.; Yeung, A. D. Kinetics of the (salen)Cr(III) and (salen)Co(III) catalyzed copolymerization of epoxides with CO2, and of the accompanying degradation reactions. Poly. Chem. -UK. 2015, 6, 1103-1117.  doi: 10.1039/C4PY01322K

    9. [9]

      Jacobsen, E. N. Asymmetric catalysis of epoxide ring-opening reactions. Acc. Chem. Res. 2000, 33, 421-431.  doi: 10.1021/ar960061v

    10. [10]

      Liu, T. T.; Liang, J.; Xu, R.; Huang, Y. B.; Cao, R. Salen-Co(III) insertion in multivariate cationic metal-organic frameworks for the enhanced cycloaddition reaction of carbon dioxide. Chem. Commun. 2019, DOI: 10.1039/c8cc10268f.

    11. [11]

      Qin, Z.; Thomas, C. M.; Lee, S.; Coates, G. W. Cobalt-based complexes for the copolymerization of propylene oxide and CO2: active and selective catalysts for polycarbonate synthesis. Angew. Chem. Int. Ed. 2003, 42, 5484-5487.  doi: 10.1002/anie.200352605

    12. [12]

      Darensbourg, D. J. Making plastics from carbon dioxide: salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2. Chem. Rev. 2007, 38, 2388-2410.

    13. [13]

      Lednor, P. W.; Rol, N. C. Copolymerization of propene oxide with carbon dioxide: a selective incorporation of propene oxide into the polycarbonate chains, determined by 100 MHz 13C NMR spectroscopy. J. Chem. Soc. Chem. Commun. 1985, 9, 598-599.

    14. [14]

      Lu, B. Y.; Gao, Y. H.; Zhao, X.; Yan, W. D.; Wang, X. H. Alternating copolymerization of carbon dioxide and propylene oxide under bifunctional cobalt salen complexes: role of Lewis base substituent covalent bonded on salen ligand. J. Polym. Sci. Pol. Chem. 2010, 48, 359-365.  doi: 10.1002/pola.23792

    15. [15]

      Decortes, A.; Haak, R. M.; Martin, C.; Martin, E.; Belmonte, M. M.; Kleij, A. Copolymerization of CO2 and cyclohexene oxide mediated by Yb(salen)-based complexes. Macromolecules 2015, 48, 8197-8207.  doi: 10.1021/acs.macromol.5b01880

    16. [16]

      Kember, M. R.; Buchard, A.; Williams, C. K. Catalysts for CO2/epoxide copolymerisation. Chem. Commun. 2011, 47, 141-163.  doi: 10.1039/C0CC02207A

  • 加载中
    1. [1]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    2. [2]

      Qiaojia GUOJunkai CAIChunying DUAN . Effects of anions on the structural regulation of Zn-salen-modified metal-organic cage. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2203-2211. doi: 10.11862/CJIC.20240209

    3. [3]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    4. [4]

      Guoping YangZhoufu LinXize ZhangJiawei CaoXuejiao ChenYufeng LiuXiaoling LinKe Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274

    5. [5]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    6. [6]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    7. [7]

      Minghui ZhangNa ZhangQian ZhaoChao WangAlexander SteinerJianliang XiaoWeijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081

    8. [8]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    9. [9]

      Peng ZhangYitao YangTian QinXueqiu WuYuechang WeiJing XiongXi LiuYu WangZhen ZhaoJinqing JiaoLiwei Chen . Interface engineering of Pt/CeO2-{100} catalysts for enhancing catalytic activity in auto-exhaust carbon particles oxidation. Chinese Chemical Letters, 2025, 36(2): 110396-. doi: 10.1016/j.cclet.2024.110396

    10. [10]

      Panpan WangHongbao FangMengmeng WangGuandong ZhangNa XuYan SuHongke LiuZhi Su . A mitochondria targeting Ir(III) complex triggers ferroptosis and autophagy for cancer therapy: A case of aggregation enhanced PDT strategy for metal complexes. Chinese Chemical Letters, 2025, 36(1): 110099-. doi: 10.1016/j.cclet.2024.110099

    11. [11]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    12. [12]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    13. [13]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332

    14. [14]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    15. [15]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    16. [16]

      Jun ZhangZhiyao ZhengCan Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160

    17. [17]

      Xingfen HuangJiefeng ZhuChuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783

    18. [18]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    19. [19]

      Lu-Lu HeLan-Tu XiongXin WangYu-Zhen LiJia-Bao LiYu ShiXin DengZi-Ning Cui . Application of inhibitors targeting the type III secretion system in phytopathogenic bacteria. Chinese Chemical Letters, 2025, 36(4): 110044-. doi: 10.1016/j.cclet.2024.110044

    20. [20]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

Metrics
  • PDF Downloads(3)
  • Abstract views(324)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return