Citation: CHEN Yan-Chun, LIU Peng-Fei, CHEN Ling, WU Li-Ming. Thermoelectric Properties of Ag-doped In4Se2.95 Polycrystalline Compounds[J]. Chinese Journal of Structural Chemistry, ;2016, 35(12): 1868-1875. doi: 10.14102/j.cnki.0254-5861.2011-1224 shu

Thermoelectric Properties of Ag-doped In4Se2.95 Polycrystalline Compounds

  • Corresponding author: WU Li-Ming, liming_wu@fjirsm.ac.cn
  • Received Date: 30 March 2016
    Accepted Date: 18 May 2016

    Fund Project: National Natural Science Foundation of China 91422303, 21225104, 21571020, 21233009, and 21301175

Figures(3)

  • In4Se3-based materials are noticeable n-type thermoelectric materials because of lead-free and intrinsically low lattice thermal conductivity, but the In4Se3-δ crystals (with Se-deficiency, δ) suffer strong anisotropy and cleavage habit. Thus the researches on polycrystalline In4Se3-based materials are of great importance. Herein, we experimentally and theoretically investigated the thermoelectric properties of In4-xSe2.95Agx polycrystalline compounds. Ag occupying the intercalation or In4 site is energetically most favorable in light of the density functional theory calculation. The maximum solubility of Ag (xm) is very low (xm<0.03) and the experimental result indicates that the electrical transport behavior of In4-xSe2.95Agx compounds is not significantly optimized by Ag-dopant. Consequently, a maximum ZT of 0.92 at 723 K is obtained by In3.98Se2.95Ag0.02 compound that represents 15% enhancement over that of the un-doped one which benefits from the slightly enhanced power factor and the reduced total thermal conductivity.
  • 加载中
    1. [1]

      Elsheikh M. H, Shnawah D. A, Sabri M. F. M, Said S. B. M, Hassan M. H, Bashir M. B. A, Mohamad M. A review on thermoelectric renewable energy: principle parameters that affect their performance[J]. Renew. Sust. Energ. Rev, 2014,30:337-355. doi: 10.1016/j.rser.2013.10.027

    2. [2]

      Sales B. C. Smaller is cooler[J]. Science, 2002,295:1248-1249. doi: 10.1126/science.1069895 

    3. [3]

      DiSalvo F. J. Thermoelectric cooling and power generation[J]. Science, 1999,285:703-706. doi: 10.1126/science.285.5428.703

    4. [4]

      Losovyj Y. B, Makinistian L, Albanesi E. A, Petukhov A. G, Liu J, Galiy P, Dveriy O. R, Dowben P. A. The anisotropic band structure of layered In4Se3 (001)[J]. J. Appl. Phys, 2008,104083713. doi: 10.1063/1.3000453

    5. [5]

      Hogg J. H. C, Sutherland H. H, Williams D. J. Crystallographic evidence for the existence of the phases In4Se3 and In4Te3 which contain the homonuclear triatornic cation (In3)5+[J]. Chem. Commun, 1971:1568-1569.  

    6. [6]

      Rhyee J. S, Lee K. H, Lee S. M, Cho E, Kim S. II, Lee E, Kwon Y. S, Shim J. H, Kotliar G. Peierls distortion as a route to high thermoelectric performance in In4Se3-δ crystals[J]. Nature, 2009,459:965-968. doi: 10.1038/nature08088

    7. [7]

      Zhai Y. B, Zhang Q. S, Jiang J, Zhang T, Xiao Y. K, Yang S. G, Xu G. J. Thermoelectric performance of the ordered In4Se3-In composite constructed by monotectic solidification[J]. J. Mater. Chem. A, 2013,1:8844-8847. doi: 10.1039/c3ta01599h

    8. [8]

      Zhu G. H, Lan Y. C, Wang H, Joshi G, Chen Q, Ren Z. F. Effect of selenium deficiency on the thermoelectric properties of n-type In4Se3-x compounds[J]. Phys. Rev. B, 2011,83115201. doi: 10.1103/PhysRevB.83.115201

    9. [9]

      Rhyee J. S, Cho E, Lee K. H, Lee S. M, Kim S. II, Kim H. S, Kwon Y. S, Kim S. J. Thermoelectric properties and anisotropic electronic band structure on the In4Se3-x compounds[J]. Appl. Phys. Lett, 2009,95212106. doi: 10.1063/1.3266579

    10. [10]

      Kim J. H, Kim M. J, Oh S, Rhyee J. S. Thermoelectric properties of Se-deficient and Pb-/Sn-codoped In4Pb0.01Sn0.03Se3-x polycrystalline compounds[J]. J. Alloys Compd, 2014,615:933-936. doi: 10.1016/j.jallcom.2014.06.196

    11. [11]

      Luo Y. B, Yang J. Y, Liu M, Xiao Y, Fu L. W, Li W. X, Zhang D, Zhang M. Y, Cheng Y. D. Multiple heteroatoms induced carrier engineering and hierarchical nanostructure for high thermoelectric performance of polycrystalline In4Se2.5[J]. J. Mater. Chem. A, 2015,3:1251-1257. doi: 10.1039/C4TA05508J

    12. [12]

      Luo Y. B, Yang J. Y, Li G, Liu M, Xiao Y, Fu L. W, Li W. X, Zhu P. W, Peng J. Y, Gao S. Z, Zhang J. Q. Enhancement of the thermoelectric performance of polycrystalline In4Se2.5 by copper intercalation and bromine substitution[J]. Adv. Energy Mater, 2014,41300599. doi: 10.1002/aenm.201300599

    13. [13]

      Lin Z. S, Chen L, Wang L. M, Zhao J. T, Wu L. M. A promising mid-temperature thermoelectric material candidate: Pb/Sn-codoped In4PbxSnySe3[J]. Adv. Mater, 2013,25:4800-4806. doi: 10.1002/adma.v25.34

    14. [14]

      He S. H, Lin Z. X, Muhammad A. K, Liu P. F, Chen L, Wu L. M. Thermoelectric properties of Ni-substituted polycrystalline In4Se3[J]. Chin. J. Struct. Chem, 2015,34:1217-1223.  

    15. [15]

      Shi X, Cho J. Y, Salvador J. R, Yang J, Wang H. Thermoelectric properties of polycrystalline In4Se3 and In4Te3[J]. Appl. Phys. Lett, 2010,96162108. doi: 10.1063/1.3389494

    16. [16]

      Rhyee J. S, Cho E, Ahn K, Lee K. H, Lee S. M. Thermoelectric properties of bipolar diffusion effect on In4Se3-xTex compounds[J]. Appl. Phys. Lett, 2010,97152104. doi: 10.1063/1.3493269

    17. [17]

      Lim Y. S, Jeong M, Seo W. S, Lee J. H, Park C. H, Sznajder M, Kharkhalis L. Y, Bercha D. M, Yang J. Condenson state and its effects on thermoelectric properties in In4Se3[J]. J. Phys. D: Appl. Phys, 2013,46275304. doi: 10.1088/0022-3727/46/27/275304

    18. [18]

      Ahn K, Cho E, Rhyee J. S, Kim S. II, Lee S. M, Lee H. K. Effect of cationic substitution on the thermoelectric properties of In4-xMxSe2.95 compounds (M = Na, Ca, Zn, Ga, Sn, Pb; x = 0.1)[J]. Appl. Phys. Lett, 2011,99102110. doi: 10.1063/1.3637053

    19. [19]

      Rhyee J. S, Ahn K, Lee K. H, Ji H. S, Shim J. H. Enhancement of the thermoelectric figure-of-merit in a wide temperature range in In4Se3-xCl0.03 bulk crystals[J]. Adv. Mater, 2011,23:2191-2194. doi: 10.1002/adma.v23.19

    20. [20]

      Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B, 1996,54:11169-11186. doi: 10.1103/PhysRevB.54.11169

    21. [21]

      Perdew J. P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys. Rev. B, 1992,45:13244-13249. doi: 10.1103/PhysRevB.45.13244

    22. [22]

      Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev. B, 1999,59:1758-1775.  

    23. [23]

      Bl?chl P. E, Jepsen O, Andersen O. K. Improved tetrahedron method for Brillouin-zone integrations[J]. Phys. Rev. B, 1994,49:16223-16233. doi: 10.1103/PhysRevB.49.16223

    24. [24]

      Gibbs Z. M, Kim H. S, Wang H, Snyder G. J. Band gap estimation from temperature dependent Seebeck measurement-deviations from the 2e.S.maxTmax relation[J]. Appl. Phys. Lett, 2015,106022112. doi: 10.1063/1.4905922

    25. [25]

      Goldsmid H. J, Sharp J. W. Estimation of the thermal band gap of a semiconductor from Seebeck measurements[J]. J. Electron. Mater, 1999,28:869-872. doi: 10.1007/s11664-999-0211-y

    26. [26]

      Lee M. H, Kim K. R, Rhyee J. S, Park S. D, Snyder G. J. High thermoelectric figure-of-merit in Sb2Te3/Ag2Te bulk composites as Pb-free p-type thermoelectric materials[J]. J. Mater. Chem. C, 2015,3:10494-10499. doi: 10.1039/C5TC01623A

    27. [27]

      Kim J. H, Kim M. J, Oh S, Rhyee J. S, Park S. D, Ahn D. Thermoelectric properties and chlorine doping effect of In4Pb0.01Sn0.03Se2.9Clx polycrystalline compounds[J]. Dalton Trans, 2015,44:3185-3189. doi: 10.1039/C4DT03432E

    28. [28]

      May A. F, Toberer E. S, Saramat A, Snyder G. J. Characterization and analysis of thermoelectric transport in n-type Ba8Ga16-xGe30+x[J]. Phys. Rev. B, 2009,80125205. doi: 10.1103/PhysRevB.80.125205

  • 加载中
    1. [1]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    2. [2]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    3. [3]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    4. [4]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    5. [5]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    6. [6]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    7. [7]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    8. [8]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    9. [9]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    10. [10]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    11. [11]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    12. [12]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    13. [13]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

    14. [14]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    15. [15]

      Yongjing DengFeiyang LiZijian ZhouMengzhu WangYongkang ZhuJianwei ZhaoShujuan LiuQiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085

    16. [16]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    17. [17]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    18. [18]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    19. [19]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    20. [20]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2023.100335

Metrics
  • PDF Downloads(0)
  • Abstract views(6862)
  • HTML views(278)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return