Five-heterocyclic-biphosphinesubstituted Fe-only Hydrogenase Mimic: Synthesis, Characterization and Properties
- Corresponding author: CHEN Chang-Neng, ccn@fjirsm.ac.cn
Citation: WANG Qing, MA Cheng-Bing, CHEN Hui, HUANG De-Guang, CHEN Chang-Neng. Five-heterocyclic-biphosphinesubstituted Fe-only Hydrogenase Mimic: Synthesis, Characterization and Properties[J]. Chinese Journal of Structural Chemistry, ;2016, 35(12): 1972-1979. doi: 10.14102/j.cnki.0254-5861.2011-1211
Lawrence J. D, Li H, Rauchfuss T. B, Benard M, Rohmer M. M. Diiron azadithiolates as models for the iron-only hydrogenase active site: synthesis, structure, and stereoelectronics[J]. Angew. Chem., Int. Ed., 2001,40:1768-1771. doi: 10.1002/(ISSN)1521-3773
Ott S, Kritikos M, Akermark B, Sun L C, Lomoth R. A biomimetic pathway for hydrogen evolution from a model of the iron hydrogenase active site[J]. Angew. Chem., Int. Ed., 2004,43:1006-1009. doi: 10.1002/(ISSN)1521-3773
Felton G. A. N, Mebi C. A, Petro B. J, Vannucci A. K, Evans D. H, Glass R. S, Lichtenberger D. L. Review of electrochemical studies of complexes containing the Fe2S2 core characteristic of[J]. J. Organomet. Chem., 2009,694:2681-2699. doi: 10.1016/j.jorganchem.2009.03.017
Baltazar C. S. A, Marques M. C, Soares C. M, DeLacey A. M, Pereira I. A. C, Matias P. M. Nickel-iron-selenium hydrogenases-an overview[J]. Eur. J. Inorg. Chem., 2011,7:948-962.
Frey, M. Hydrogenases: hydrogen-activating enzymes. ChemBioChem. 2002, 2-3, 153-160.
Peters J. W, Lanzilotta W. N, Lemon B. J, Seefeldt L. C. X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution[J]. Science, 1998,282:1853-1858. doi: 10.1126/science.282.5395.1853
Peters J. W. Structure and mechanism of iron-only hydrogenases[J]. Curr. Opin. Struc. Biol., 1999,9:670-676. doi: 10.1016/S0959-440X(99)00028-7
Huo F. W, Hou J, Chen G. C, Guo D. M, Peng X. J. [FeFe]-Hydrogen models: overpotential control for electrocatalytic H2 production by tuning of the ligand π-acceptor ability. Eur. J[J]. Inorg. Chem., 2010,25:3942-3951.
Chong D, Georgakaki I. P, Mejia-Rodriguez R, Sanabria-Chinchilla J, Soriaga M. P, Darensbourg M. Y. Electrocatalysis of hydrogen production by active site analogues of the iron hydrogenase enzyme: structure/function relationships[J]. Dalton Trans., 2003,21:4158-4163.
Schwartz L, Eilers G, Eriksson L, Gogoll A, Lomoth R, Ott S. Iron hydrogenase active site mimic holding a proton and a hydride[J]. Chem. Commun., 2006,5:520-522.
Si G, Wang W. G, Wang H. Y, Tung C. H, Wu L. Z. Facile synthesis and functionality-dependent electrochemistry of Fe-only hydrogenase mimics[J]. Inorg. Chem., 2008,47:8101-8111. doi: 10.1021/ic800676y
Gloaguen F, Lawrence J. D, Rauchfuss T. B, Benard M, Rohmer M. M. Bimetallic carbonyl thiolates as functional models for Fe-only hydrogenases[J]. Inorg. Chem., 2002,41:6573-6582. doi: 10.1021/ic025838x
Gloaguen F, Lawrence J. D, Rauchfuss T. B. Biomimetic hydrogen evolution catalyzed by an iron carbonyl thiolate[J]. J. Am. Chem. Soc., 2001,123:9476-9477. doi: 10.1021/ja016516f
Chong D. S, Georgakaki I. P, Mejia-Rodriguez R, Samabria-Chinchilla J, Soriaga M. P, Darensbourg M. Y. Electrocatalysis of hydrogen production by active site analogues of the iron hydrogenase enzyme: structure /function relationships[J]. Dalton Trans., 2003,21:4158-4163.
Capon J. F, Gloaguen F, Schollhammer P, Talarmin J. Electrochemical proton reduction by thiolate-bridged hexacarbonyldiiron clusters[J]. J. Electroanal. Chem., 2004,566:241-247. doi: 10.1016/j.jelechem.2003.11.032
Song L. C, Yang Z, Bian H. Z, Hu Q. M. Novel single and double diiron oxadithiolates as models for the active site of[J]. Organometallics, 2004,13:3082-3084.
Si Y, Charreteur K, Capon J. F, Gloaguen F. Pétillon, F. Y, Schollhammer, P. Talarmin, J. Non-innocent bma ligand in a dissymetrically disubstituted diiron dithiolate related to the active site of the[J]. J. Inorg. Biochem., 2010,104:1038-1042. doi: 10.1016/j.jinorgbio.2010.05.011
Cui H. H, Wu N. N, Wang J. Y, Hu M. Q, Wen H. M, Chen C. N. Pyridyl- and pyrimidyl-phosphine-substituted[J]. J. Organomet. Chem., 2014,767:46-53. doi: 10.1016/j.jorganchem.2014.04.026
Capon J. F, Gloaguen F, Schollhammer P, Talarmin J. Activation of proton by the two-electron reduction of a di-iron organometallic complex[J]. J. Electroanal. Chem., 2006,595:47-52. doi: 10.1016/j.jelechem.2006.06.005
Felton G. A. N, Vannucci A. K, Chen J. Z, Lockett L. T, Okumura N, Petro B. J, Zakai U. I, Evans D. H, Glass R. S, Lichtenberger D. L. Hydrogen generation from weak acids: electrochemical and computational studies of a diiron hydrogenase mimic[J]. J. Am. Chem. Soc., 2007,41:12521-12530.
Chen L, Wang M, Gloaguen F, Zheng D. H, Zhang P. L, Sun L. C. Multielectron-transfer templates via consecutive two-electron transformations: iron-sulfur complexes relevant to biological enzymes[J]. Chem. Eur. J., 2012,18:13968-13973. doi: 10.1002/chem.v18.44
Chen L, Wang M, Gloaguen F, Zheng D. H, Zhang P. L, Sun L. C. Tetranuclear iron complexes bearing benzenetetrathiolate bridges as four-electron transformation templates and their electrocatalytic properties for proton reduction[J]. Inorg. Chem., 2013,52:1798-1806. doi: 10.1021/ic301647u
Kang D. M, Kim S. G, Lee S. J, Park J. K, Park K. M, Shin S. C. Synthesis, characterization, and absorption spectra of metallamacrocycles,[J]. Soc., 2005,9:1390-1394.
Sevillano P, Fuhr O, Hampe O, Lebedkin S, Neiss C, Ahlrichs R, Fenske D, Kappes M. M. Synthesis, characterization and quantum mechanical calculations of[J]. J. Inorg. Chem., 2007,33:5163-5167.
Stott T. L, Wolf M. O, Patrick B. O. Structural and electronic properties of phosphino(oligothiophene) gold(I) complexes[J]. Inorg. Chem., 2005,3:620-627.
Brown, J. M.; Lucy, A. R. Trans-bis(diphenylphosphino)cyclopropane; a ligand selective for binuclear complexation with ca. 4.5 ? intermetallic separation. J. Organomet. Chem. 1986, 1-2, 241-246.
Hourihane R, Gray G, Spalding T, Deeney T. Synthesis and spectroscopic characterisation of compounds with formula[J]. Chem., 2002,642:40-47.
Li P, Wang M, He C. J, Li G. H, Liu X. Y, Chen C. N, Akermark B, Sun L. C. Influence of tertiary phosphanes on the coordination configurations and electrochemical properties of iron hydrogenase model complexes: crystal structures of[J]. J. Inorg. Chem., 2005,12:2506-2513.
Messelhauser J, Lorenz I. P, Haug K, Hiller W. Synthesis and structure of the ethenedithiolato complex[J]. Z. Naturforsch Teil. B, 1985,40:1064-1067.
Stott T. L, Wolf M. O. Spectroscopic study of phosphine-substituted oligothiophenes[J]. J. Phys. Chem. B, 2004,108:18815-18819. doi: 10.1021/jp047037g
Sheldrick, G. M. SHELXS97, Program for the Solution of Crystal Structure. University of G?ttingen, Germany 1997.
Sheldrick, G. M. SHELXL97, Program for the Refinement of Crystal Structure. University of G?ttingen, Germany 1997.
Zhao X; Georgakaki I. P, Miller M. L, Mejia-Rodriguez R, Chiang C. Y, Darensbourg M. Y. Catalysis of H2/D2 scrambling and other H/D exchange processes by[J]. Inorg. Chem., 2002,15:3917-3928.
Ott S, Borgstrom M, Kritikos M, Lomoth R, Bergquist J, Akermark B, Hammarstrom L, Sun L. C. Model of the iron hydrogenase active site covalently linked to a ruthenium photosensitizer: synthesis and photophysical properties[J]. Inorg. Chem., 2004,15:4683-4692.
Gloaguen F, Lawrence J. D, Rauchfuss T. B, Benard M, Rohmer M. M. Bimetallic carbonyl thiolates as functional models for Fe-Only hydrogenases[J]. Inorg. Chem., 2002,25:6573-6582.
Gao W. M, Liu J. H, Akermark B, Sun L. C. Bidentate phosphine ligand based Fe2S2-containing macromolecules: synthesis, characterization, and catalytic electrochemical hydrogen production[J]. Inorg. Chem., 2006,23:9169-9171.
Matthews S. L, Heinekey D. M. A carbonyl-rich bridging hydride complex relevant to the Fe-Fe hydrogenase active site[J]. Inorg. Chem., 2010,49:9746-9748. doi: 10.1021/ic1017328
Gao W. M, Ekstrom J, Liu J. H, Chen C. N, Eriksson L, Weng L. H, Akermark B, Sun L. H. Binuclear iron-sulfur complexes with bidentate phosphine ligands as active site models of Fe-hydrogenase and their catalytic proton reduction[J]. Inorg. Chem., 2007,46:1981-1991. doi: 10.1021/ic0610278
Xueling Yu , Lixing Fu , Tong Wang , Zhixin Liu , Na Niu , Ligang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167
Yi Liu , Peng Lei , Yang Feng , Shiwei Fu , Xiaoqing Liu , Siqi Zhang , Bin Tu , Chen Chen , Yifan Li , Lei Wang , Qing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571
Junxin Li , Chao Chen , Yuzhen Dong , Jian Lv , Jun-Mei Peng , Yuan-Ye Jiang , Daoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732
Neng Shi , Haonan Jia , Jixiang Zhang , Pengyu Lu , Chenglong Cai , Yixin Zhang , Liqiang Zhang , Nongyue He , Weiran Zhu , Yan Cai , Zhangqi Feng , Ting Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302
Yuxin Li , Chengbin Liu , Qiuju Li , Shun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541
Shulei Hu , Yu Zhang , Xiong Xie , Luhan Li , Kaixian Chen , Hong Liu , Jiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408
Tian Feng , Yun-Ling Gao , Di Hu , Ke-Yu Yuan , Shu-Yi Gu , Yao-Hua Gu , Si-Yu Yu , Jun Xiong , Yu-Qi Feng , Jie Wang , Bi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259
Cheng Guo , Xiaoxiao Zhang , Xiujuan Hong , Yiqiu Hu , Lingna Mao , Kezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867
Xiaohui Fu , Yanping Zhang , Juan Liao , Zhen-Hua Wang , Yong You , Jian-Qiang Zhao , Mingqiang Zhou , Wei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688
Yi Herng Chan , Zhe Phak Chan , Serene Sow Mun Lock , Chung Loong Yiin , Shin Ying Foong , Mee Kee Wong , Muhammad Anwar Ishak , Ven Chian Quek , Shengbo Ge , Su Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
Yun Wei , Lei Zhou , Wenbin Hu , Liming Yang , Guang Yang , Chaoqiang Wang , Hui Shi , Fei Han , Yufa Feng , Xuan Ding , Penghui Shao , Xubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172
Mianying Huang , Zhiguang Xu , Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309
Runze Liu , Yankai Bian , Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250
Chi Li , Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324
Yuanyi Zhou , Ke Ma , Jinfeng Liu , Zirun Zheng , Bo Hu , Yu Meng , Zhizhong Li , Mingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Yun-Fei Zhang , Chun-Hui Zhang , Jian-Hui Xu , Lei Li , Dan Li , Jin-Hong Fan , Jiale Gao , Xin Quan , Qi Wu , Yue Zou , Yan-Ling Liu . Enhanced degradation of florfenicol by microscale SiC/Fe: Dechlorination via hydrogenolysis. Chinese Chemical Letters, 2024, 35(7): 109385-. doi: 10.1016/j.cclet.2023.109385
Weichen Zhu , Wei Zuo , Pu Wang , Wei Zhan , Jun Zhang , Lipin Li , Yu Tian , Hong Qi , Rui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341