Citation: WANG Qing, MA Cheng-Bing, CHEN Hui, HUANG De-Guang, CHEN Chang-Neng. Five-heterocyclic-biphosphinesubstituted Fe-only Hydrogenase Mimic: Synthesis, Characterization and Properties[J]. Chinese Journal of Structural Chemistry, ;2016, 35(12): 1972-1979. doi: 10.14102/j.cnki.0254-5861.2011-1211 shu

Five-heterocyclic-biphosphinesubstituted Fe-only Hydrogenase Mimic: Synthesis, Characterization and Properties

  • Corresponding author: CHEN Chang-Neng, ccn@fjirsm.ac.cn
  • Received Date: 22 March 2016
    Accepted Date: 2 June 2016

    Fund Project: the NNSFC 21231003 and 21203195

Figures(4)

  • A new five-heterocyclic-biphosphine-substituted Fe-only hydrogenase mimic,[(μ-pdt)Fe2(CO)5]2(PTP) (1), has been synthesized at room temperature. 1·H2O crystallizes in triclinic system, space group P1, with a=11.5897(4), b=13.6156(4), c=18.0333(6)Å, α=76.306(3), β=72.742(3), γ=68.939(3)°, V=2508.84(14)Å3, Dc=1.570 g/cm3, Z=2, Mr=1186.37, F(000)=1204, the final R=0.0748, and wR=0.2012. In the tetranuclear complex 1·H2O, each[2Fe2S] butterfly unit is attached to one P atom of the diphosphine bridge and exhibits a square-pyramidal geometry. Complex 1 was characterized by elemental analysis, IR spectra, UV-vis absorption spectra, 1H-NMR and 31P-NMR. The cyclic voltammetry behavior of compound 1 was investigated as well.
  • 加载中
    1. [1]

      Lawrence J. D, Li H, Rauchfuss T. B, Benard M, Rohmer M. M. Diiron azadithiolates as models for the iron-only hydrogenase active site: synthesis, structure, and stereoelectronics[J]. Angew. Chem., Int. Ed., 2001,40:1768-1771. doi: 10.1002/(ISSN)1521-3773

    2. [2]

      Ott S, Kritikos M, Akermark B, Sun L C, Lomoth R. A biomimetic pathway for hydrogen evolution from a model of the iron hydrogenase active site[J]. Angew. Chem., Int. Ed., 2004,43:1006-1009. doi: 10.1002/(ISSN)1521-3773

    3. [3]

      Felton G. A. N, Mebi C. A, Petro B. J, Vannucci A. K, Evans D. H, Glass R. S, Lichtenberger D. L. Review of electrochemical studies of complexes containing the Fe2S2 core characteristic of[J]. J. Organomet. Chem., 2009,694:2681-2699. doi: 10.1016/j.jorganchem.2009.03.017

    4. [4]

      Baltazar C. S. A, Marques M. C, Soares C. M, DeLacey A. M, Pereira I. A. C, Matias P. M. Nickel-iron-selenium hydrogenases-an overview[J]. Eur. J. Inorg. Chem., 2011,7:948-962.

    5. [5]

      Frey, M. Hydrogenases: hydrogen-activating enzymes. ChemBioChem. 2002, 2-3, 153-160.

    6. [6]

      Peters J. W, Lanzilotta W. N, Lemon B. J, Seefeldt L. C. X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution[J]. Science, 1998,282:1853-1858. doi: 10.1126/science.282.5395.1853

    7. [7]

      Peters J. W. Structure and mechanism of iron-only hydrogenases[J]. Curr. Opin. Struc. Biol., 1999,9:670-676. doi: 10.1016/S0959-440X(99)00028-7

    8. [8]

      Huo F. W, Hou J, Chen G. C, Guo D. M, Peng X. J. [FeFe]-Hydrogen models: overpotential control for electrocatalytic H2 production by tuning of the ligand π-acceptor ability. Eur. J[J]. Inorg. Chem., 2010,25:3942-3951.

    9. [9]

      Chong D, Georgakaki I. P, Mejia-Rodriguez R, Sanabria-Chinchilla J, Soriaga M. P, Darensbourg M. Y. Electrocatalysis of hydrogen production by active site analogues of the iron hydrogenase enzyme: structure/function relationships[J]. Dalton Trans., 2003,21:4158-4163.  

    10. [10]

      Schwartz L, Eilers G, Eriksson L, Gogoll A, Lomoth R, Ott S. Iron hydrogenase active site mimic holding a proton and a hydride[J]. Chem. Commun., 2006,5:520-522.  

    11. [11]

      Si G, Wang W. G, Wang H. Y, Tung C. H, Wu L. Z. Facile synthesis and functionality-dependent electrochemistry of Fe-only hydrogenase mimics[J]. Inorg. Chem., 2008,47:8101-8111. doi: 10.1021/ic800676y

    12. [12]

      Gloaguen F, Lawrence J. D, Rauchfuss T. B, Benard M, Rohmer M. M. Bimetallic carbonyl thiolates as functional models for Fe-only hydrogenases[J]. Inorg. Chem., 2002,41:6573-6582. doi: 10.1021/ic025838x

    13. [13]

      Gloaguen F, Lawrence J. D, Rauchfuss T. B. Biomimetic hydrogen evolution catalyzed by an iron carbonyl thiolate[J]. J. Am. Chem. Soc., 2001,123:9476-9477. doi: 10.1021/ja016516f

    14. [14]

      Chong D. S, Georgakaki I. P, Mejia-Rodriguez R, Samabria-Chinchilla J, Soriaga M. P, Darensbourg M. Y. Electrocatalysis of hydrogen production by active site analogues of the iron hydrogenase enzyme: structure /function relationships[J]. Dalton Trans., 2003,21:4158-4163.

    15. [15]

      Capon J. F, Gloaguen F, Schollhammer P, Talarmin J. Electrochemical proton reduction by thiolate-bridged hexacarbonyldiiron clusters[J]. J. Electroanal. Chem., 2004,566:241-247. doi: 10.1016/j.jelechem.2003.11.032

    16. [16]

      Song L. C, Yang Z, Bian H. Z, Hu Q. M. Novel single and double diiron oxadithiolates as models for the active site of[J]. Organometallics, 2004,13:3082-3084.

    17. [17]

      Si Y, Charreteur K, Capon J. F, Gloaguen F. Pétillon, F. Y, Schollhammer, P. Talarmin, J. Non-innocent bma ligand in a dissymetrically disubstituted diiron dithiolate related to the active site of the[J]. J. Inorg. Biochem., 2010,104:1038-1042. doi: 10.1016/j.jinorgbio.2010.05.011

    18. [18]

      Cui H. H, Wu N. N, Wang J. Y, Hu M. Q, Wen H. M, Chen C. N. Pyridyl- and pyrimidyl-phosphine-substituted[J]. J. Organomet. Chem., 2014,767:46-53. doi: 10.1016/j.jorganchem.2014.04.026

    19. [19]

      Capon J. F, Gloaguen F, Schollhammer P, Talarmin J. Activation of proton by the two-electron reduction of a di-iron organometallic complex[J]. J. Electroanal. Chem., 2006,595:47-52. doi: 10.1016/j.jelechem.2006.06.005

    20. [20]

      Felton G. A. N, Vannucci A. K, Chen J. Z, Lockett L. T, Okumura N, Petro B. J, Zakai U. I, Evans D. H, Glass R. S, Lichtenberger D. L. Hydrogen generation from weak acids: electrochemical and computational studies of a diiron hydrogenase mimic[J]. J. Am. Chem. Soc., 2007,41:12521-12530.

    21. [21]

      Chen L, Wang M, Gloaguen F, Zheng D. H, Zhang P. L, Sun L. C. Multielectron-transfer templates via consecutive two-electron transformations: iron-sulfur complexes relevant to biological enzymes[J]. Chem. Eur. J., 2012,18:13968-13973. doi: 10.1002/chem.v18.44

    22. [22]

      Chen L, Wang M, Gloaguen F, Zheng D. H, Zhang P. L, Sun L. C. Tetranuclear iron complexes bearing benzenetetrathiolate bridges as four-electron transformation templates and their electrocatalytic properties for proton reduction[J]. Inorg. Chem., 2013,52:1798-1806. doi: 10.1021/ic301647u

    23. [23]

      Kang D. M, Kim S. G, Lee S. J, Park J. K, Park K. M, Shin S. C. Synthesis, characterization, and absorption spectra of metallamacrocycles,[J]. Soc., 2005,9:1390-1394.

    24. [24]

      Sevillano P, Fuhr O, Hampe O, Lebedkin S, Neiss C, Ahlrichs R, Fenske D, Kappes M. M. Synthesis, characterization and quantum mechanical calculations of[J]. J. Inorg. Chem., 2007,33:5163-5167.

    25. [25]

      Stott T. L, Wolf M. O, Patrick B. O. Structural and electronic properties of phosphino(oligothiophene) gold(I) complexes[J]. Inorg. Chem., 2005,3:620-627.  

    26. [26]

      Brown, J. M.; Lucy, A. R. Trans-bis(diphenylphosphino)cyclopropane; a ligand selective for binuclear complexation with ca. 4.5 ? intermetallic separation. J. Organomet. Chem. 1986, 1-2, 241-246.

    27. [27]

      Hourihane R, Gray G, Spalding T, Deeney T. Synthesis and spectroscopic characterisation of compounds with formula[J]. Chem., 2002,642:40-47.

    28. [28]

      Li P, Wang M, He C. J, Li G. H, Liu X. Y, Chen C. N, Akermark B, Sun L. C. Influence of tertiary phosphanes on the coordination configurations and electrochemical properties of iron hydrogenase model complexes: crystal structures of[J]. J. Inorg. Chem., 2005,12:2506-2513.

    29. [29]

      Messelhauser J, Lorenz I. P, Haug K, Hiller W. Synthesis and structure of the ethenedithiolato complex[J]. Z. Naturforsch Teil. B, 1985,40:1064-1067.

    30. [30]

      Stott T. L, Wolf M. O. Spectroscopic study of phosphine-substituted oligothiophenes[J]. J. Phys. Chem. B, 2004,108:18815-18819. doi: 10.1021/jp047037g

    31. [31]

      Sheldrick, G. M. SHELXS97, Program for the Solution of Crystal Structure. University of G?ttingen, Germany 1997.

    32. [32]

      Sheldrick, G. M. SHELXL97, Program for the Refinement of Crystal Structure. University of G?ttingen, Germany 1997.

    33. [33]

      Zhao X; Georgakaki I. P, Miller M. L, Mejia-Rodriguez R, Chiang C. Y, Darensbourg M. Y. Catalysis of H2/D2 scrambling and other H/D exchange processes by[J]. Inorg. Chem., 2002,15:3917-3928.

    34. [34]

      Ott S, Borgstrom M, Kritikos M, Lomoth R, Bergquist J, Akermark B, Hammarstrom L, Sun L. C. Model of the iron hydrogenase active site covalently linked to a ruthenium photosensitizer: synthesis and photophysical properties[J]. Inorg. Chem., 2004,15:4683-4692.

    35. [35]

      Gloaguen F, Lawrence J. D, Rauchfuss T. B, Benard M, Rohmer M. M. Bimetallic carbonyl thiolates as functional models for Fe-Only hydrogenases[J]. Inorg. Chem., 2002,25:6573-6582.  

    36. [36]

      Gao W. M, Liu J. H, Akermark B, Sun L. C. Bidentate phosphine ligand based Fe2S2-containing macromolecules: synthesis, characterization, and catalytic electrochemical hydrogen production[J]. Inorg. Chem., 2006,23:9169-9171.  

    37. [37]

      Matthews S. L, Heinekey D. M. A carbonyl-rich bridging hydride complex relevant to the Fe-Fe hydrogenase active site[J]. Inorg. Chem., 2010,49:9746-9748. doi: 10.1021/ic1017328

    38. [38]

      Gao W. M, Ekstrom J, Liu J. H, Chen C. N, Eriksson L, Weng L. H, Akermark B, Sun L. H. Binuclear iron-sulfur complexes with bidentate phosphine ligands as active site models of Fe-hydrogenase and their catalytic proton reduction[J]. Inorg. Chem., 2007,46:1981-1991. doi: 10.1021/ic0610278

  • 加载中
    1. [1]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    2. [2]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    3. [3]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    4. [4]

      Neng ShiHaonan JiaJixiang ZhangPengyu LuChenglong CaiYixin ZhangLiqiang ZhangNongyue HeWeiran ZhuYan CaiZhangqi FengTing Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302

    5. [5]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    6. [6]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    7. [7]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    8. [8]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    9. [9]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    10. [10]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    11. [11]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    12. [12]

      Yun WeiLei ZhouWenbin HuLiming YangGuang YangChaoqiang WangHui ShiFei HanYufa FengXuan DingPenghui ShaoXubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172

    13. [13]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    14. [14]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    15. [15]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    16. [16]

      Yuanyi ZhouKe MaJinfeng LiuZirun ZhengBo HuYu MengZhizhong LiMingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056

    17. [17]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    18. [18]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    19. [19]

      Yun-Fei ZhangChun-Hui ZhangJian-Hui XuLei LiDan LiJin-Hong FanJiale GaoXin QuanQi WuYue ZouYan-Ling Liu . Enhanced degradation of florfenicol by microscale SiC/Fe: Dechlorination via hydrogenolysis. Chinese Chemical Letters, 2024, 35(7): 109385-. doi: 10.1016/j.cclet.2023.109385

    20. [20]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

Metrics
  • PDF Downloads(0)
  • Abstract views(4257)
  • HTML views(94)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return