Citation: MU Ruo-Jun, PANG Jie, YUAN Yi, TAN Xiao-Dan, WANG Min, CHEN Han, Wei-Yin Chiang. Progress on the Structures and Functions of Aerogels[J]. Chinese Journal of Structural Chemistry, ;2016, 35(3): 487-497. doi: 10.14102/j.cnki.0254-5861.2011-1098 shu

Progress on the Structures and Functions of Aerogels

  • Received Date: 25 December 2015
    Available Online: 29 February 2016

    Fund Project:

  • Aerogel materials possess a wide variety of excellent functions, hence a striking number of applications have developed for them. In this paper, we present a historic review of the aerogel materials, showing the main concepts, research methods, important scientific problems, formation mechanism, structure characteristics and essence of aerogel. More applications are evolving as the scientific and engineering community, which becomes familiar with the unusual and exceptional physical properties of aerogels. In addition, we also discuss the huge development potential and prospect of polysaccharide aerogels as the research trend in the future.
  • 加载中
    1. [1]

      (1) Mateusz, B. B.; Daniel, E. M.; Mohammad, F. I.; Lawrence, A. H.; James, M. K.; Arjun, G. Y. Carbon nanotube aerogels. Adv. Mater. 2007, 19, 661-664.

    2. [2]

      (2) Bag, S.; Trikalitis, P. N.; Chupas, P. J.; Armatas, G. S.; Kanatzidis, M. G. Porous semiconducting gels and aerogels from chalcogenide clusters. Science 2007, 317, 490-493.

    3. [3]

      (3) Kyu, H. K.; Youngseok, O.; Islam, M. F. Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue. Nat. Nanotech. 2012, 7, 562-566.

    4. [4]

      (4) Olsson, R. T.; Azizi-Samir, M. A.; Salazar, A. G.; Belova, L.; Ström, V.; Berglund, L. A.; Ikkala, O.; Nogués, J.; Gedde, U. W. Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat. Nanotech. 2010, 5, 584-588.

    5. [5]

      (5) Zhao, Y.; Thorkelsson, K.; Mastroianni, A. J.; Schilling, T.; Luther, J. M.; Rancatore, B. J.; Matsunaga, K.; Jinnai, H.; Wu, Y.; Poulsen, D.; Fréchet, M. J.; Alivisatos, A. P.; Xu, T. Small-molecule-directed nanoparticle assembly towards stimuli-responsive nanocomposites. Nat. Mater. 2009, 8, 979-985.

    6. [6]

      (6) Lin, Y.; Böker A.; He, J. B.; Sill, K.; Xiang, H. Q.; Abetz, C.; Li, X. F.; Wang, J.; Emrick, T.; Long, S.; Wang, Q.; Balazs, A.; Russell, T. P. Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature 2005, 43, 55-59.

    7. [7]

      (7) Han, H. H.; Zhao, Z. B.; Wan, W. B.; Gogotsi, Y.; Qiu, J. S. Ultralight and highly compressible graphene aerogels. Adv. Mater. 2013, 25, 2219-2223.

    8. [8]

      (8) Kistler, S. S. Coherent expanded aerogels and jellies. Nature 1931, 127, 741.

    9. [9]

      (9) Kistler, S. S. Coherent expanded-aerogels. J. Phy. Chem. 1932, 36, 52-64.

    10. [10]

      (10) Aegerter, M. A.; Leventis, N.; Koebel, M. M.

    11. [11]

      (2011). Aerogels Handbook. Springer publishing. ISBN 978-1-4419-7477-8.

    12. [12]

      (11) Fisher, D. K. The space place: catching comet dust with aerogel. Tech. Child. 2005, 9, 3.

    13. [13]

      (12) Flynn, G. J.; Sutton, S. R.; Lanzirotti, A. A. Synchrotron-based facility for the in-situ location, chemical and mineralogical characterization of ~10 μm particles captured in aerogel. Adv. in Space Res. 2009, 43, 328-334.

    14. [14]

      (13) Qiu, L.; Liu, D. Y.; Wang, Y. F.; Cheng, C.; Zhou, K.; Ding, J.; Truong, V. T.; Li, D. Mechanically robust, electrically conductive and stimuli-responsive binary network hydrogels enabled by superelastic graphene aerogels. Adv. Mater. 2014, 26, 3333-3337.

    15. [15]

      (14) Sun, H. Y.; Xu, Z.; Gao, C. Aerogels: multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater. 2013, 25, 2632.

    16. [16]

      (15) Si, Y.; Yu, J. Y.; Tang, X. M.; Ge, J. L.; Ding, B. Ultralight nanofiber-assembled cellular aerogels with superelasticity and multifunctionality. Nat. Commun. 2014, 5, 5802.

    17. [17]

      (16) Cao, A. Y.; Dickrell, P. L.; Gregory, S. W.; Ghasemi-Nejhad, M. N.; Ajayan, P. M. Super-compressible foamlike carbon nanotube films. Science 2005, 310, 1307-1310.

    18. [18]

      (17) Pollanen, J.; Shirer, K. R.; S. Blinstein; Davis, J. P.; Choi, H.; Lippman, T. M.; Halperin, W. P.; Lurio, L. B. Globally anisotropic high porosity silica aerogels. J. Non-Cryst. Solids 2008, 354, 4668-4674.

    19. [19]

      (18) Gui, X. C.; Wei, J. Q.; Wang, K. L.; Cao, A. Y.; Zhu, H. W.; Jia, Y.; Shu, Q. K.; Wu, D. H. Carbon nanotube sponges. Adv. Mater. 2010, 22, 617-621.

    20. [20]

      (19) Lu, X.; Ardunini-Schuster, M. C.; Kuhnm, J.; Nilsson, O.; Fricke, J.; Pekala, R. W. Thermal conductivity of monolithic organic aerogels. Science 1991, 255, 971-972.

    21. [21]

      (20) Pääkö, M.; Vapaavuori, J.; Silvennoinen, R.; Kosonen, H.; Ankerfors, M.; Lindström, T.; Berglund, L. A.; Ikkala, O. Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Mat. 2008, 4, 2492-2499.

    22. [22]

      (21) Xu, X. Z.; Zhou, J.; Nagaraju, D. H.; Jiang, L.; Marinov, V. R.; Lubineau, G.; Alshareef, H. N.; Myungkeun O. Flexible, highly graphitized carbon aerogels based on bacterial cellulose/lignin: catalyst-free synthesis and its application in energy storage devices. Adv. Fun. Mater. 2015, 25, 3193-3202

    23. [23]

      (22) Zhou, Z. P.; Wu, X. F. High-performance porous electrodes for pseudosupercapacitors based on graphene-beaded carbon nanofibers surface-coated with nanostructured conducting polymers. J. Power Sour. 2014, 262, 44-49.

    24. [24]

      (23) Lin, B. L.; Cui, S.; Liu, X. Y.; Liu, Y.; Shen, X. D.; Han, G. F. Preparation and adsorption property of phenyltriethoxysilane modified SiO2 aerogel. J. Wuhan Univer. Tech-Mater. Sci. Ed. 2013, 28, 916-920.

    25. [25]

      (24) Li, W. C.; Lu, A. H.; Guo, S. C. Characterization of the microstructures of organic and carbon aerogels based upon mixed cresol-formaldehyde. Carbon 2001, 39, 1989-1994.

    26. [26]

      (25) Guo, W.; Wang, J. J.; Gao, W. G.; Wang, H. Comparison of two different methods of preparing chemical raw materials using blast furnace gas. Adv. Mater. Res. 2012, 1783, 96-100.

    27. [27]

      (26) Lin, J. Y.; Yu, L. B.; Tian, F.; Zhao, N.; Li, X. H.; Bian, F. G.; Wang, J. Cellulose nanofibrils aerogels generated from jute fibers. Carb. Polymers 2014, 109, 35-43.

    28. [28]

      (27) García-González, C. A.; Smirnova, I. Use of supercritical fluid technology for the production of tailor-made aerogel particles for delivery systems. J. Super. Fluids 2013, 79, 152-158.

    29. [29]

      (28) Qin, Y. C.; Ren, H. B.; Zhu, F. H.; Zhang, L.; Shang, C. W.; Wei, Z. J.; Luo, M. M. Preparation of POSS-based organic-inorganic hybrid mesoporous materials networks through Schiff base chemistry. Eur. Poly. J. 2011, 47, 853-860.

    30. [30]

      (29) Yu, H. T.; Liu, D.; Duan, Y. Y.; Wang, X. D. Theoretical model of radiative transfer in opacified aerogel based on realistic microstructure. Int. J. Heat Mass Trans. 2014, 70, 478-485.

    31. [31]

      (30) Wu, Y. Z.; Chowdari, V. R.; Bobba, S. R. Research and application of carbon nanofiber and nanocomposites via electrospinning technique in energy conversion systems. Cur. Org. Chem. 2013, 17, 1411-1423.

    32. [32]

      (31) Dulo, B, ; Wang, N.; Li, Y.; Oyondi, E.; Madara, S. D.; Ding, B. Controllable fabrication of spider-web-like structured anaphe panda regenerated silk nanofibers/nets via electrospinning/netting. J. Donghua Univer. 2014, 31, 497-502.

    33. [33]

      (32) Fan, L. L.; Peng, S. H.; Wen, C. R.; He, M. X.; Wei, X, Q.; Wu, C. H.; Yao, M. N.; Feng, R.; Pang, J. Analysis of influential factors of konjac glucomannan (KGM) molecular structure on its activity. Chin. J. Struct. Chem. 2012, 31, 605-613.

    34. [34]

      (33) Wen, C. R.; Sun, Z. Q.; Pang, J.; Ma, Z.; Shen, B. S.; Xie, B. Q.; Jing, P. Analysis on the network node of konjac glucomannan molecular chain. Chin.

    35. [35]

      (34) Pang, J.; Ma, Z.; Shen, B. S.; Xu, Q. J.; Sun, Z. Q.; Fu, L. Q.; Fang, W. Y.; Wen, C. R. Hydrogen bond networks' QSAR and topological analysis of

    36. [36]

      konjac glucomannan chains. Chin. J. Struct. Chem. 2014, 33, 480-489.

    37. [37]

      (35) Chen, H.; Mu, R. J.; Pang, J.; Tan, X. D.; Lin, H. B.; Ma, Z.; Chiang, W. Y. Influence of topology structure on the stability of konjac glucomannan nano gel microfibril. Chin. J. Struct. Chem. 2015, 34, 1939-1941.

    38. [38]

      (36) Nie, H. R.; Shen, X. X.; Zhou, Z. H.; Jiang, Q. S.; Chen, Y. W.; Xie, A.; Wang, Y.; Han, C. C. Electrospinning and characterization of konjac glucomannan/chitosan nanofibrous scaffolds favoring the growth of bone mesenchymal stem cells. Carb. Poly. 2011, 85, 681-686.

    39. [39]

      (37) He, Y. L.; Xie, T. Advances of thermal conductivity models of nanoscale silica aerogel insulation material. Appl. Thermal. Eng. 2015, 81, 28-50.

    40. [40]

      (38) Acharya, A.; Joshi, D.; Gokhale, V. A. Aegrol-a promising building material for sustainable buildings. Chem. Pro. Eng. Res. 2013, 9, 1-6.

    41. [41]

      (39) Cuce, E.; Cuce, P. M.; Wood, C. J.; Riffat, S. B. Toward aerogel based thermal superinsulation in buildings: a comprehensive review. Renew. Sustain. Ener. Rev. 2014, 34, 273-299.

    42. [42]

      (40) Baetens, R.; Jelle, B. P.; Gustavsen, A. Aerogel insulation for building applications: a state-of-the-art review. Ener. and Build. 2011, 43, 761-769.

    43. [43]

      (41) Zhao, Y.; Tang, G. H.; Du, M. Numerical study of radiative properties of nanoporous silica aerogel. Inter. J. Thermal Sci. 2015, 89, 110-120.

    44. [44]

      (42) Wei, G. S; Liu, Y. S.; Zhang, X. X. Thermal conductivities study on silica aerogel and its composite insulation materials. Inter. J. Heat Mass Trans. 2011, 54, 2355-2366.

    45. [45]

      (43) Cotana, F.; Pisello, A. L.; Moretti, E.; Buratti, C. Multipurpose characterization of glazing systems with silica aerogel: in-field experimental analysis of thermal-energy, lighting and acoustic performance. Build. Environ. 2014, 81, 92-102.

    46. [46]

      (44) Wang, H.; Yuan, X. Z. New generation material for oil spill cleanup. Res. Article 2014, 21, 1248-1250.

    47. [47]

      (45) Kwon, S. J.; Hwang, C. R.; Jang, A. R. Preparation and characterization of transparent polyimide/silica composite films by a sol-gel reaction. Mol. Cryst. Liquid Cryst. 2013, 584, 9-17.

    48. [48]

      (46) Rubesh, L. W.; Coronado, P. R.; Satcher, J. H. Solvent removal from water with hydrophobic aerol. J. Non-Cryst. Solids 2001, 285, 328-332.

    49. [49]

      (47) Reynolds, J. G.; Paul, R. Hydrophobic aerogels for oil spill clean up synthesis and characterization. J. Non-Cryst. Solids 2001, 292, 127-137.

    50. [50]

      (48) Gao, T.; Jelle, B. P.; Ihara, T.; Gustavsen, A. Insulating glazing units with silica aerogel granules: the impact of particle size. Appl. Energy 2014, 128, 27-34.

    51. [51]

      (49) Reim, M.; Reichenauer, G.; Körner, W.; Manara, J.; Arduini-Schuster, M.; Korder, S.; Beck, A.; Fricke, J. Silica-aerogel granulate-structural, optical and thermal properties, J. Non-Cryst. Solids 2004, 350, 358-363.

    52. [52]

      (50) Jensen, K. I.; Schultz, J. M.; Kristiansen, F. H. Development of windows based onhighly insulating aerogel glazings, J. Non-Cryst. Solids 2004, 350, 351-357.

    53. [53]

      (51) Maleki, H.; Durães, L.; Portugal, A. An overview on silica aerogels synthesis and different mechanicalreinforcing strategies. J. Non-Cryst. Solids 2014, 385, 55-74.

    54. [54]

      (52) Jain, K. K. Nanotechnologies (M). The Handbook of Nanomedicine. Humana Press 2012, 7-57.

    55. [55]

      (53) Bajt, S.; Sandford, S. A.; Flynn, G. J.; Matrajt, G.; Snead, C. J.; Westphal, A. J.; Bradley, J. P. Infrared spectroscopy of wild 2 particle hypervelocity tracks in stardust aerogel: evidence for the presence of volatile organics in cometary dust. Meteor. Planet. Sci.2009, 44, 471-484.

    56. [56]

      (54) Liu, G.; Zhou, B. Synthesis and characterization improvement of gradient density aerogels for hypervelocity particle capture through co-gelation of binary sols. J. Sol-gel Sci. Tech. 2013, 68, 9-18.

    57. [57]

      (55) Golightly, J. S.; Isaacson, M. J.; Ward, J. W. Energy storage devices containing a carbon nanotube aerogel and methods for making the same: U.S. Patent Application 14/194, 531(P). 2014-2-28.

    58. [58]

      (56) Hong, J. Y.; Bak, B. M.; Wie, J. J.; Kong, J.; Park, H. S. Reversibly compressible, highly elastic, and durable graphene aerogels for energy storage devices under limiting conditions. Adv. Fun. Mater. 2015, 25, 1053-1062.

    59. [59]

      (57) Tang, J.; Du, A.; Xu, W. W.; Liu, G. W.; Zhang, Z. H.; Shen, J. Fabrication and characterization of composition-gradient CuO/SiO2 composite aerogel. J. Sol-gel Sci. Tech. 2013, 68, 102-109.

    60. [60]

      (58) Zhu, X. R.; Zhou, B.; Du, A.; Chen, K.; Li, Y. N.; Zhang, Z. H.; Shen, J.; Wu, G. M.; Ni, X. Y. Potential SiO2/CRF bilayer perturbation aerogel target for ICF hydrodynamic instability experiment. Fusion Eng. Des. 2012, 87, 92-97.

    61. [61]

      (59) Jiří, L.; Lubomír, M. Aerogel-material of the future for civil engineering. Trans. VŠB - Tech. Univer. Ostrava. Constr. Series 2011, 14, 1-9.

    62. [62]

      (60) Jie, P.; Zhang, S. L.; Liu, P. Y.; Zhang, X. G. A study on Chinese amorphophallus resources. Resour. Sci. 2001, 23, 87-89.J. Struct. Chem. 2014, 33, 1253-1260.

  • 加载中
    1. [1]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    2. [2]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    5. [5]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    6. [6]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    7. [7]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    8. [8]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    9. [9]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    10. [10]

      Zhaoru ChenXiaoxu LiuHaonan ChenJialong LiXiaofeng WangJianfeng Zhu . Application of epoxy resin in cultural relics protection. Chinese Chemical Letters, 2024, 35(4): 109194-. doi: 10.1016/j.cclet.2023.109194

    11. [11]

      Jiajing Wu Ru-Ling Tang Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291

    12. [12]

      Yan WangSi-Meng ZhaiPeng LuoXi-Yan DongJia-Yin WangZhen HanShuang-Quan Zang . Vapor- and temperature-triggered reversible optical switching for multi-response Cu8 cluster supercrystals. Chinese Chemical Letters, 2024, 35(11): 109493-. doi: 10.1016/j.cclet.2024.109493

    13. [13]

      Lihua GaoYinglei HanChensheng LinHuikang JiangGuang PengGuangsai YangJindong ChenNing Ye . Halogen-assisted octet binding electrons construction of pnictogens towards wide-bandgap nonlinear optical pnictides. Chinese Chemical Letters, 2024, 35(12): 109529-. doi: 10.1016/j.cclet.2024.109529

    14. [14]

      Weiping GuoYing ZhuHong-Hua CuiLingyun LiYan YuZhong-Zhen LuoZhigang Zouβ-Pb3P2S8: A new optical crystal with exceptional birefringence effect. Chinese Chemical Letters, 2025, 36(2): 110256-. doi: 10.1016/j.cclet.2024.110256

    15. [15]

      Hongyuan ShaDongling YangYanran ShangZujian WangRongbing SuChao HeXiaoming YangXifa Long . Trithionic guanidine: A novel semi-organic short-wave ultraviolet nonlinear optical sulfate with dimeric heteroleptic tetrahedra. Chinese Chemical Letters, 2025, 36(4): 109730-. doi: 10.1016/j.cclet.2024.109730

    16. [16]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    17. [17]

      Rongliang DengYihang ChenXiaotong FanGuolong ChenShuli WangChangzhi YuXiao YangTingzhu WuZhong ChenYue Lin . Break of thermal equilibrium between optical and acoustic phonon branches of CsPbI3 under continuous-wave light excitation and cryogenic temperature. Chinese Chemical Letters, 2024, 35(7): 109346-. doi: 10.1016/j.cclet.2023.109346

    18. [18]

      Pu ZhangXiang MaoXuehua DongLing HuangLiling CaoDaojiang GaoGuohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235

    19. [19]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    20. [20]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

Metrics
  • PDF Downloads(0)
  • Abstract views(816)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return