Citation: MU Ruo-Jun, PANG Jie, YUAN Yi, TAN Xiao-Dan, WANG Min, CHEN Han, Wei-Yin Chiang. Progress on the Structures and Functions of Aerogels[J]. Chinese Journal of Structural Chemistry, ;2016, 35(3): 487-497. doi: 10.14102/j.cnki.0254-5861.2011-1098
-
Aerogel materials possess a wide variety of excellent functions, hence a striking number of applications have developed for them. In this paper, we present a historic review of the aerogel materials, showing the main concepts, research methods, important scientific problems, formation mechanism, structure characteristics and essence of aerogel. More applications are evolving as the scientific and engineering community, which becomes familiar with the unusual and exceptional physical properties of aerogels. In addition, we also discuss the huge development potential and prospect of polysaccharide aerogels as the research trend in the future.
-
-
[1]
(1) Mateusz, B. B.; Daniel, E. M.; Mohammad, F. I.; Lawrence, A. H.; James, M. K.; Arjun, G. Y. Carbon nanotube aerogels. Adv. Mater. 2007, 19, 661-664.
-
[2]
(2) Bag, S.; Trikalitis, P. N.; Chupas, P. J.; Armatas, G. S.; Kanatzidis, M. G. Porous semiconducting gels and aerogels from chalcogenide clusters. Science 2007, 317, 490-493.
-
[3]
(3) Kyu, H. K.; Youngseok, O.; Islam, M. F. Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue. Nat. Nanotech. 2012, 7, 562-566.
-
[4]
(4) Olsson, R. T.; Azizi-Samir, M. A.; Salazar, A. G.; Belova, L.; Ström, V.; Berglund, L. A.; Ikkala, O.; Nogués, J.; Gedde, U. W. Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat. Nanotech. 2010, 5, 584-588.
-
[5]
(5) Zhao, Y.; Thorkelsson, K.; Mastroianni, A. J.; Schilling, T.; Luther, J. M.; Rancatore, B. J.; Matsunaga, K.; Jinnai, H.; Wu, Y.; Poulsen, D.; Fréchet, M. J.; Alivisatos, A. P.; Xu, T. Small-molecule-directed nanoparticle assembly towards stimuli-responsive nanocomposites. Nat. Mater. 2009, 8, 979-985.
-
[6]
(6) Lin, Y.; Böker A.; He, J. B.; Sill, K.; Xiang, H. Q.; Abetz, C.; Li, X. F.; Wang, J.; Emrick, T.; Long, S.; Wang, Q.; Balazs, A.; Russell, T. P. Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature 2005, 43, 55-59.
-
[7]
(7) Han, H. H.; Zhao, Z. B.; Wan, W. B.; Gogotsi, Y.; Qiu, J. S. Ultralight and highly compressible graphene aerogels. Adv. Mater. 2013, 25, 2219-2223.
-
[8]
(8) Kistler, S. S. Coherent expanded aerogels and jellies. Nature 1931, 127, 741.
-
[9]
(9) Kistler, S. S. Coherent expanded-aerogels. J. Phy. Chem. 1932, 36, 52-64.
-
[10]
(10) Aegerter, M. A.; Leventis, N.; Koebel, M. M.
-
[11]
(2011). Aerogels Handbook. Springer publishing. ISBN 978-1-4419-7477-8.
-
[12]
(11) Fisher, D. K. The space place: catching comet dust with aerogel. Tech. Child. 2005, 9, 3.
-
[13]
(12) Flynn, G. J.; Sutton, S. R.; Lanzirotti, A. A. Synchrotron-based facility for the in-situ location, chemical and mineralogical characterization of ~10 μm particles captured in aerogel. Adv. in Space Res. 2009, 43, 328-334.
-
[14]
(13) Qiu, L.; Liu, D. Y.; Wang, Y. F.; Cheng, C.; Zhou, K.; Ding, J.; Truong, V. T.; Li, D. Mechanically robust, electrically conductive and stimuli-responsive binary network hydrogels enabled by superelastic graphene aerogels. Adv. Mater. 2014, 26, 3333-3337.
-
[15]
(14) Sun, H. Y.; Xu, Z.; Gao, C. Aerogels: multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater. 2013, 25, 2632.
-
[16]
(15) Si, Y.; Yu, J. Y.; Tang, X. M.; Ge, J. L.; Ding, B. Ultralight nanofiber-assembled cellular aerogels with superelasticity and multifunctionality. Nat. Commun. 2014, 5, 5802.
-
[17]
(16) Cao, A. Y.; Dickrell, P. L.; Gregory, S. W.; Ghasemi-Nejhad, M. N.; Ajayan, P. M. Super-compressible foamlike carbon nanotube films. Science 2005, 310, 1307-1310.
-
[18]
(17) Pollanen, J.; Shirer, K. R.; S. Blinstein; Davis, J. P.; Choi, H.; Lippman, T. M.; Halperin, W. P.; Lurio, L. B. Globally anisotropic high porosity silica aerogels. J. Non-Cryst. Solids 2008, 354, 4668-4674.
-
[19]
(18) Gui, X. C.; Wei, J. Q.; Wang, K. L.; Cao, A. Y.; Zhu, H. W.; Jia, Y.; Shu, Q. K.; Wu, D. H. Carbon nanotube sponges. Adv. Mater. 2010, 22, 617-621.
-
[20]
(19) Lu, X.; Ardunini-Schuster, M. C.; Kuhnm, J.; Nilsson, O.; Fricke, J.; Pekala, R. W. Thermal conductivity of monolithic organic aerogels. Science 1991, 255, 971-972.
-
[21]
(20) Pääkö, M.; Vapaavuori, J.; Silvennoinen, R.; Kosonen, H.; Ankerfors, M.; Lindström, T.; Berglund, L. A.; Ikkala, O. Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Mat. 2008, 4, 2492-2499.
-
[22]
(21) Xu, X. Z.; Zhou, J.; Nagaraju, D. H.; Jiang, L.; Marinov, V. R.; Lubineau, G.; Alshareef, H. N.; Myungkeun O. Flexible, highly graphitized carbon aerogels based on bacterial cellulose/lignin: catalyst-free synthesis and its application in energy storage devices. Adv. Fun. Mater. 2015, 25, 3193-3202
-
[23]
(22) Zhou, Z. P.; Wu, X. F. High-performance porous electrodes for pseudosupercapacitors based on graphene-beaded carbon nanofibers surface-coated with nanostructured conducting polymers. J. Power Sour. 2014, 262, 44-49.
-
[24]
(23) Lin, B. L.; Cui, S.; Liu, X. Y.; Liu, Y.; Shen, X. D.; Han, G. F. Preparation and adsorption property of phenyltriethoxysilane modified SiO2 aerogel. J. Wuhan Univer. Tech-Mater. Sci. Ed. 2013, 28, 916-920.
-
[25]
(24) Li, W. C.; Lu, A. H.; Guo, S. C. Characterization of the microstructures of organic and carbon aerogels based upon mixed cresol-formaldehyde. Carbon 2001, 39, 1989-1994.
-
[26]
(25) Guo, W.; Wang, J. J.; Gao, W. G.; Wang, H. Comparison of two different methods of preparing chemical raw materials using blast furnace gas. Adv. Mater. Res. 2012, 1783, 96-100.
-
[27]
(26) Lin, J. Y.; Yu, L. B.; Tian, F.; Zhao, N.; Li, X. H.; Bian, F. G.; Wang, J. Cellulose nanofibrils aerogels generated from jute fibers. Carb. Polymers 2014, 109, 35-43.
-
[28]
(27) García-González, C. A.; Smirnova, I. Use of supercritical fluid technology for the production of tailor-made aerogel particles for delivery systems. J. Super. Fluids 2013, 79, 152-158.
-
[29]
(28) Qin, Y. C.; Ren, H. B.; Zhu, F. H.; Zhang, L.; Shang, C. W.; Wei, Z. J.; Luo, M. M. Preparation of POSS-based organic-inorganic hybrid mesoporous materials networks through Schiff base chemistry. Eur. Poly. J. 2011, 47, 853-860.
-
[30]
(29) Yu, H. T.; Liu, D.; Duan, Y. Y.; Wang, X. D. Theoretical model of radiative transfer in opacified aerogel based on realistic microstructure. Int. J. Heat Mass Trans. 2014, 70, 478-485.
-
[31]
(30) Wu, Y. Z.; Chowdari, V. R.; Bobba, S. R. Research and application of carbon nanofiber and nanocomposites via electrospinning technique in energy conversion systems. Cur. Org. Chem. 2013, 17, 1411-1423.
-
[32]
(31) Dulo, B, ; Wang, N.; Li, Y.; Oyondi, E.; Madara, S. D.; Ding, B. Controllable fabrication of spider-web-like structured anaphe panda regenerated silk nanofibers/nets via electrospinning/netting. J. Donghua Univer. 2014, 31, 497-502.
-
[33]
(32) Fan, L. L.; Peng, S. H.; Wen, C. R.; He, M. X.; Wei, X, Q.; Wu, C. H.; Yao, M. N.; Feng, R.; Pang, J. Analysis of influential factors of konjac glucomannan (KGM) molecular structure on its activity. Chin. J. Struct. Chem. 2012, 31, 605-613.
-
[34]
(33) Wen, C. R.; Sun, Z. Q.; Pang, J.; Ma, Z.; Shen, B. S.; Xie, B. Q.; Jing, P. Analysis on the network node of konjac glucomannan molecular chain. Chin.
-
[35]
(34) Pang, J.; Ma, Z.; Shen, B. S.; Xu, Q. J.; Sun, Z. Q.; Fu, L. Q.; Fang, W. Y.; Wen, C. R. Hydrogen bond networks' QSAR and topological analysis of
-
[36]
konjac glucomannan chains. Chin. J. Struct. Chem. 2014, 33, 480-489.
-
[37]
(35) Chen, H.; Mu, R. J.; Pang, J.; Tan, X. D.; Lin, H. B.; Ma, Z.; Chiang, W. Y. Influence of topology structure on the stability of konjac glucomannan nano gel microfibril. Chin. J. Struct. Chem. 2015, 34, 1939-1941.
-
[38]
(36) Nie, H. R.; Shen, X. X.; Zhou, Z. H.; Jiang, Q. S.; Chen, Y. W.; Xie, A.; Wang, Y.; Han, C. C. Electrospinning and characterization of konjac glucomannan/chitosan nanofibrous scaffolds favoring the growth of bone mesenchymal stem cells. Carb. Poly. 2011, 85, 681-686.
-
[39]
(37) He, Y. L.; Xie, T. Advances of thermal conductivity models of nanoscale silica aerogel insulation material. Appl. Thermal. Eng. 2015, 81, 28-50.
-
[40]
(38) Acharya, A.; Joshi, D.; Gokhale, V. A. Aegrol-a promising building material for sustainable buildings. Chem. Pro. Eng. Res. 2013, 9, 1-6.
-
[41]
(39) Cuce, E.; Cuce, P. M.; Wood, C. J.; Riffat, S. B. Toward aerogel based thermal superinsulation in buildings: a comprehensive review. Renew. Sustain. Ener. Rev. 2014, 34, 273-299.
-
[42]
(40) Baetens, R.; Jelle, B. P.; Gustavsen, A. Aerogel insulation for building applications: a state-of-the-art review. Ener. and Build. 2011, 43, 761-769.
-
[43]
(41) Zhao, Y.; Tang, G. H.; Du, M. Numerical study of radiative properties of nanoporous silica aerogel. Inter. J. Thermal Sci. 2015, 89, 110-120.
-
[44]
(42) Wei, G. S; Liu, Y. S.; Zhang, X. X. Thermal conductivities study on silica aerogel and its composite insulation materials. Inter. J. Heat Mass Trans. 2011, 54, 2355-2366.
-
[45]
(43) Cotana, F.; Pisello, A. L.; Moretti, E.; Buratti, C. Multipurpose characterization of glazing systems with silica aerogel: in-field experimental analysis of thermal-energy, lighting and acoustic performance. Build. Environ. 2014, 81, 92-102.
-
[46]
(44) Wang, H.; Yuan, X. Z. New generation material for oil spill cleanup. Res. Article 2014, 21, 1248-1250.
-
[47]
(45) Kwon, S. J.; Hwang, C. R.; Jang, A. R. Preparation and characterization of transparent polyimide/silica composite films by a sol-gel reaction. Mol. Cryst. Liquid Cryst. 2013, 584, 9-17.
-
[48]
(46) Rubesh, L. W.; Coronado, P. R.; Satcher, J. H. Solvent removal from water with hydrophobic aerol. J. Non-Cryst. Solids 2001, 285, 328-332.
-
[49]
(47) Reynolds, J. G.; Paul, R. Hydrophobic aerogels for oil spill clean up synthesis and characterization. J. Non-Cryst. Solids 2001, 292, 127-137.
-
[50]
(48) Gao, T.; Jelle, B. P.; Ihara, T.; Gustavsen, A. Insulating glazing units with silica aerogel granules: the impact of particle size. Appl. Energy 2014, 128, 27-34.
-
[51]
(49) Reim, M.; Reichenauer, G.; Körner, W.; Manara, J.; Arduini-Schuster, M.; Korder, S.; Beck, A.; Fricke, J. Silica-aerogel granulate-structural, optical and thermal properties, J. Non-Cryst. Solids 2004, 350, 358-363.
-
[52]
(50) Jensen, K. I.; Schultz, J. M.; Kristiansen, F. H. Development of windows based onhighly insulating aerogel glazings, J. Non-Cryst. Solids 2004, 350, 351-357.
-
[53]
(51) Maleki, H.; Durães, L.; Portugal, A. An overview on silica aerogels synthesis and different mechanicalreinforcing strategies. J. Non-Cryst. Solids 2014, 385, 55-74.
-
[54]
(52) Jain, K. K. Nanotechnologies (M). The Handbook of Nanomedicine. Humana Press 2012, 7-57.
-
[55]
(53) Bajt, S.; Sandford, S. A.; Flynn, G. J.; Matrajt, G.; Snead, C. J.; Westphal, A. J.; Bradley, J. P. Infrared spectroscopy of wild 2 particle hypervelocity tracks in stardust aerogel: evidence for the presence of volatile organics in cometary dust. Meteor. Planet. Sci.2009, 44, 471-484.
-
[56]
(54) Liu, G.; Zhou, B. Synthesis and characterization improvement of gradient density aerogels for hypervelocity particle capture through co-gelation of binary sols. J. Sol-gel Sci. Tech. 2013, 68, 9-18.
-
[57]
(55) Golightly, J. S.; Isaacson, M. J.; Ward, J. W. Energy storage devices containing a carbon nanotube aerogel and methods for making the same: U.S. Patent Application 14/194, 531(P). 2014-2-28.
-
[58]
(56) Hong, J. Y.; Bak, B. M.; Wie, J. J.; Kong, J.; Park, H. S. Reversibly compressible, highly elastic, and durable graphene aerogels for energy storage devices under limiting conditions. Adv. Fun. Mater. 2015, 25, 1053-1062.
-
[59]
(57) Tang, J.; Du, A.; Xu, W. W.; Liu, G. W.; Zhang, Z. H.; Shen, J. Fabrication and characterization of composition-gradient CuO/SiO2 composite aerogel. J. Sol-gel Sci. Tech. 2013, 68, 102-109.
-
[60]
(58) Zhu, X. R.; Zhou, B.; Du, A.; Chen, K.; Li, Y. N.; Zhang, Z. H.; Shen, J.; Wu, G. M.; Ni, X. Y. Potential SiO2/CRF bilayer perturbation aerogel target for ICF hydrodynamic instability experiment. Fusion Eng. Des. 2012, 87, 92-97.
-
[61]
(59) Jiří, L.; Lubomír, M. Aerogel-material of the future for civil engineering. Trans. VŠB - Tech. Univer. Ostrava. Constr. Series 2011, 14, 1-9.
-
[62]
(60) Jie, P.; Zhang, S. L.; Liu, P. Y.; Zhang, X. G. A study on Chinese amorphophallus resources. Resour. Sci. 2001, 23, 87-89.J. Struct. Chem. 2014, 33, 1253-1260.
-
[1]
-
-
[1]
Shuanglin TIAN , Tinghong GAO , Yutao LIU , Qian CHEN , Quan XIE , Qingquan XIAO , Yongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482
-
[2]
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
-
[3]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[4]
Jingke LIU , Jia CHEN , Yingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060
-
[5]
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
-
[6]
Jiajing Wu , Ru-Ling Tang , Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291
-
[7]
Cunjun Li , Wencong Liu , Xianlei Chen , Liang Li , Shenyu Lan , Mingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652
-
[8]
Daheng Wen , Weiwei Fang , Yongmei Liu , Tao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394
-
[9]
Rongliang Deng , Yihang Chen , Xiaotong Fan , Guolong Chen , Shuli Wang , Changzhi Yu , Xiao Yang , Tingzhu Wu , Zhong Chen , Yue Lin . Break of thermal equilibrium between optical and acoustic phonon branches of CsPbI3 under continuous-wave light excitation and cryogenic temperature. Chinese Chemical Letters, 2024, 35(7): 109346-. doi: 10.1016/j.cclet.2023.109346
-
[10]
Pu Zhang , Xiang Mao , Xuehua Dong , Ling Huang , Liling Cao , Daojiang Gao , Guohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235
-
[11]
Chaochao Jin , Kai Li , Jiongpei Zhang , Zhihua Wang , Jiajing Tan . N,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532
-
[12]
Zhaoru Chen , Xiaoxu Liu , Haonan Chen , Jialong Li , Xiaofeng Wang , Jianfeng Zhu . Application of epoxy resin in cultural relics protection. Chinese Chemical Letters, 2024, 35(4): 109194-. doi: 10.1016/j.cclet.2023.109194
-
[13]
Shuqi Yu , Yu Yang , Keisuke Kuroda , Jian Pu , Rui Guo , Li-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130
-
[14]
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
-
[15]
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
-
[16]
Xue Zhao , Mengshan Chen , Dan Wang , Haoran Zhang , Guangzhi Hu , Yingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327
-
[17]
Yu-Hang Li , Shuai Gao , Lu Zhang , Hanchun Chen , Chong-Chen Wang , Haodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894
-
[18]
Yan Wang , Huixin Chen , Fuda Yu , Shanyue Wei , Jinhui Song , Qianfeng He , Yiming Xie , Miaoliang Huang , Canzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001
-
[19]
Linhui Liu , Wuwan Xiong , Mingli Fu , Junliang Wu , Zhenguo Li , Daiqi Ye , Peirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870
-
[20]
Yue Li , Minghao Fan , Conghui Wang , Yanxun Li , Xiang Yu , Jun Ding , Lei Yan , Lele Qiu , Yongcai Zhang , Longlu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(700)
- HTML views(5)