Citation: YU Han, CAO Zhou-Ming, YU Yan. t/FeSnO(OH)5: A Novel Supported Pt Catalyst for Catalytic Oxidation of Benzene[J]. Chinese Journal of Structural Chemistry, ;2016, 35(6): 889-902. doi: 10.14102/j.cnki.0254-5861.2011-1052 shu

t/FeSnO(OH)5: A Novel Supported Pt Catalyst for Catalytic Oxidation of Benzene

  • Corresponding author: YU Yan, 
  • Received Date: 16 November 2015
    Available Online: 13 April 2016

    Fund Project: This project was supported by the National Natural Science Foundation of China (No. 51102047, 51472050) (No. 51102047, 51472050) the Natural Science Foundation of Fujian Province (No. 2013J05027) (No. 2013J05027)

  • Pt/FeSnO(OH)5 was synthesized as a novel catalyst for VOCs oxidation. Compared with Pt/γ-Al2O3 during catalytic oxidation of benzene, Pt/FeSnO(OH)5 showed better catalytic activity. After characterization of the catalysts by XRD, SEM, TEM, EDS, XPS, BET, TGA and DTA, we found most Pt could be reduced to metallic state when the hydroxyl catalyst was used as supporter, and the metallic Pt in Pt/FeSnO(OH)5 was more active than the oxidized Pt in Pt/γ-Al2O3 in catalytic oxidation of VOCs. Pt/FeSnO(OH)5 shows both good catalytic activity and high stability, which may be a promising catalyst. This study may also be helpful for the design and fabrication of new catalysts.
  • 加载中
    1. [1]

      (1) Li, Z. H.; Yang, K.; Liu, G.; Deng, G. F.; Li, J. Q.; Li, G.; Yue, R. L.; Yang, J.; Chen, Y. F. Effect of reduction treatment on structural properties of TiO2 supported Pt nanoparticles and their catalytic activity for benzene oxidation. Catal. Lett. 2014, 144, 1080-1087.

    2. [2]

      (2) Shim, W. G.; Lee, J. W.; Kim, S. C. Analysis of catalytic oxidation of aromatic hydrocarbons over supported palladium catalyst with different pretreatments based on heterogeneous adsorption properties. Appl. Catal. B: Environ. 2008, 84, 133-141.

    3. [3]

      (3) Wu, J. C. S.; Lin, Z. A.; Pan, J. W.; Rei, M. H. A novel boron nitride supported Pt catalyst for VOC incineration. Appl. Catal. A: Gen. 2001, 219, 117-124.

    4. [4]

      (4) Giraudon, J. M.; Elhachimi, A.; Leclercq, G. Catalytic oxidation of chlorobenzene over Pd/perovskites. Appl. Catal. B: Environ. 2008, 84, 251-261.

    5. [5]

      (5) Diehl, F.; Barbier, J.; Duprez, D.; Guibard, I.; Mabilon, G. Catalytic oxidation of heavy hydrocarbons over Pt/Al2O3: influence of the structure of the molecule on its reactivity. Appl. Catal. B: Environ. 2010, 95, 217-227.

    6. [6]

      (6) Lin, C. A.; Wu, J. C. S.; Pan, J. W.; Yeh, C. T. Characterization of boron-nitride-supported Pt catalysts for the deep oxidation of benzene. J. Catal. 2002, 210, 39-45.

    7. [7]

      (7) Escandón, L. S.; Ordóñez, S.; Vega, A.; Díez, F. Oxidation of methane over palladium catalysts effect of the support. Chemosphere 2005, 58, 9-17.

    8. [8]

      (8) Silviya, T.; Georgi, K.; Krasimir, T.; Yuri, K.; Vladislav, K. K. Particle size and support effects on the complete benzene oxidation by Co and Co-Pt catalysts. J. Mater. Sci. 2007, 42, 3315-3320.

    9. [9]

      (9) Miller, J. B.; Malatpure, M. Pd catalysts for total oxidation of methane support effects. Appl. Catal. A: Gen. 2015, 495, 54-62.

    10. [10]

      (10) Corro, G.; Cano, C.; Fierro, J. L. G. A study of Pt–Pd-Al2O3 catalysts for methane oxidation resistant to deactivation by sulfur poisoning. J. Mol. Catal. A: Chem. 2010, 315, 35-42.

    11. [11]

      (11) Belopukhov, E. A.; Belyi, A. S.; Smolikov, M. D.; Kir'yanov, D. I.; Gulyaeva, T. I. Benzene hydroisomerization over Pt/MOR/Al2O3 catalysts. Catal. Ind. 2012, 4, 253-260.

    12. [12]

      (12) Kwon, D. K.; Seo, P. W.; Kim, G. J.; Hong, C. Characteristics of the HCHO oxidation reaction over Pt-TiO2 catalysts at room temperature: the effect of relative humidity on catalytic activity. Appl. Catal. B: Environ. 2015, 163, 436-443.

    13. [13]

      (13) Huang, H. B.; Leung, D. Y. C.; Ye, D. Q. Effect of reduction treatment on structural properties of TiO2 supported Pt nanoparticles and their catalytic activity for formaldehyde oxidation. J. Mater. Chem. 2011, 21, 9647-9652.

    14. [14]

      (14) Pires, J.; Carvalho, A.; Carvalho, M. B. Adsorption of volatile organic compounds in Y zeolites and pillared clays. Microporous Mesoporous Mater. 2001, 43, 277-287.

    15. [15]

      (15) Postole, G.; Gervasini, A.; Guimon, C.; Auroux, A.; Bonnetot, B. Boron nitride supported metal catalysts: influence of the metal and preparation method. Mater. Sci. Forum. 2006, 518, 203-210.

    16. [16]

      (16) Haines, B. M.; Gland, J. L. Deep oxidation of chlorobenzene on the Pt(111) surface. Surf. Sci. 2008, 602, 1892-1897.

    17. [17]

      (17) Liu, C. H.; Chen, H. Y.; Ren, Z.; Dardona, S.; Piech, M.; Gao, H. Y.; Gao, P. X. Controlled synthesis and structure tunability of photocatalytically active mesoporous metal-based stannate nanostructures. Appl. Surf. Sci. 2014, 296, 53-60.

    18. [18]

      (18) Fu, X. L.; Huang, D. W.; Qin, Y.; Li, L. F.; Jiang, X. L.; Chen, S. F. Effects of preparation method on the microstructure and photocatalytic performance of ZnSn(OH)6. Appl. Catal. B: Environ. 2014, 148, 532-542.

    19. [19]

      (19) Fu, X. L.; Wang, X. X.; Ding, Z. X.; Leung, D. Y. C.; Zhang, Z. Z.; Long, J. L.; Zhang, W. X.; Li, Z. H.; Fu, X. Z. Hydroxide ZnSn(OH)6: a promising new photocatalyst for benzene degradation. Appl. Catal. B: Environ. 2009, 91, 67-72.

    20. [20]

      (20) Wang, Z. J.; Liu, J.; Wang, F.; Chen, S. Y.; Luo, H.; Yu, X. B. Size-controlled synthesis of ZnSnO3 cubic crystallites at low temperatures and their HCHO-Sensing properties. J. Phys. Chem. C 2010, 114, 13577-13582.

    21. [21]

      (21) Jiang, H.; Geng, B. Y.; Kuai, L.; Wang, S. Z. Simultaneous reduction-etching route to Pt/ZnSnO3 hollow polyhedral architectures for methanol electrooxidation in alkaline media with superior performance. Chem. Commun. 2011, 47, 2447-2449.

    22. [22]

      (22) Jena, H.; Kutty, K. V. G.; Kutty, T. R. N. Ionic transport and structural investigations on MSn(OH)6 (M = Ba, Ca, Mg, Co, Zn, Fe, Mn) hydroxide perovskites synthesized by wet sonochemical methods. Mater. Chem. Phys. 2004, 88, 167-179.

    23. [23]

      (23) Kramer, J. W.; Isaacs, S. A.; Manivannan, V. Microwave-assisted metathesis synthesis of Schoenfliesite-type MSn(OH)6 (M = Mg, Ca, Zn, and Sr) materials. J. Mater. Sci. 2009, 44, 3387-3392.

    24. [24]

      (24) Zhong, S.; Xu, R.; Wang, L.; Xu, H. F.; Zhong, S. L. CuSn(OH)6 submicrospheres: room-temperature synthesis, growth mechanism,and weak antiferromagnetic behavior. Mater. Res. Bull. 2011, 46, 2385-2391.

    25. [25]

      (25) Velu, S.; Suzuki, K.; Okazaki, M.; Osaki, T.; Tomura, S.; Ohashi, F. Synthesis of new Sn-incorporated layered double hydroxides and their thermal evolution to mixed oxides. Chem. Mater. 1999, 11, 2163-2172.

    26. [26]

      (26) Pramanik, N. C.; Das, S.; Biswas, P. K. The effect of Sn(IV) on transformation of co-precipitated hydrated In(III) and Sn(IV) hydroxides to indium tin oxide (ITO) powder. Mater. Lett. 2002, 56, 671-679.

    27. [27]

      (27) Han, L. X.; Liu, J.; Wang, Z. J.; Zhang, H.; Luo, H.; Xu, B.; Zou, X.; Zheng, X.; Ye, B.; Yu, X. B. Shape-controlled synthesis of ZnSn(OH)6 crystallites and their HCHO-sensing properties. CrystEngComm. 2012, 14, 3380-3386.

  • 加载中
    1. [1]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    2. [2]

      Yanling YangZhenfa DingHuimin WangJianhui LiYanping ZhengHongquan GuoLi ZhangBing YangQingqing GuHaifeng XiongYifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585

    3. [3]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    4. [4]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    5. [5]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    6. [6]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    7. [7]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    8. [8]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    9. [9]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    10. [10]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    11. [11]

      Yu DengYan LiuYonghui DengJinsheng ChengYidong ZouWei LuoIn situ sulfur-doped mesoporous tungsten oxides for gas sensing toward benzene series. Chinese Chemical Letters, 2024, 35(7): 108898-. doi: 10.1016/j.cclet.2023.108898

    12. [12]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    13. [13]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    14. [14]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    15. [15]

      Peizhe LiQiaoling LiuMengyu PeiYuci GanYan GongChuchen GongPei WangMingsong WangXiansong WangDa-Peng YangBo LiangGuangyu Ji . Chlorogenic acid supported strontium polyphenol networks ensemble microneedle patch to promote diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109457-. doi: 10.1016/j.cclet.2023.109457

    16. [16]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    17. [17]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    18. [18]

      Naihong Wang Longkang Zhang Yejun Guan Peng Wu Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248

    19. [19]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    20. [20]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

Metrics
  • PDF Downloads(0)
  • Abstract views(666)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return