Citation: LIN Liang, YU Yan. Application of Modified Nickel Slag Adsorbent on the Removal of Pb2+ and Cu2+ from Aqueous Solution[J]. Chinese Journal of Structural Chemistry, ;2016, 35(6): 879-888. doi: 10.14102/j.cnki.0254-5861.2011-1002 shu

Application of Modified Nickel Slag Adsorbent on the Removal of Pb2+ and Cu2+ from Aqueous Solution

  • Corresponding author: YU Yan, 
  • Received Date: 28 October 2015
    Available Online: 22 February 2016

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 51102047 & 51472050) (Nos. 51102047 & 51472050)

  • Al(OH)3 modified nickel slag adsorbent was prepared by sintering technology. The structure of the sample was characterized by BET, XRD, IR, SEM and EDAX. The sample's adsorption performance of Pb2+ and Cu2+ from aqueous solution was studied. Results indicated that the adsorbent is a loose and porous mesoporous material. Its surface had mass aluminosilicate, high-activity γ-Al2O3 and its pH ranges from 4 to 12 that all have negative charges. The BET surface of the adsorbent is 23.90 m2/g. Furthermore, its surface contains rich oxygenic functional groups, which could not only provide abundant adsorption sites for Pb2+ and Cu2+, but also improve the adsorption performance of Pb2+ and Cu2+ from waste water through the complexation of heavy metal ions. The best pH values selected in the adsorption of Pb2+ and Cu2+ are 6 and 5, respectively. With the increase of the initial concentration of simulated solution, the adsorption capacities of Pb2+ and Cu2+ gradually increased but the removal rates showed a downward trend. The competitive adsorption results of Pb2+ and Cu2+ showed that Pb2+ has better preferential adsorption than Cu2+.
  • 加载中
    1. [1]

      (1) Fan, L. L.; Luo, C. H. N.; Sun, M.; Li, X. J.; Qiu, H. M. Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites. Colloids and Surfaces B: Biointerfaces 2013, 103, 523–529.

    2. [2]

      (2) Saleh, T. A.; Gupta, V. K.; Al-Saadi, A. A. Adsorption of lead ions from aqueous solution using porous carbon derived from rubber tires: experimental and computational study. J. Colloid Interface Sci. 2013, 396, 264–269.

    3. [3]

      (3) Sheng, G. H.; Zhai, J. P. Making metallurgical slag from nickel industry a resource. Metal Mine. 2005, 10, 68–71.

    4. [4]

      (4) Pan, J.; Zheng, G. L.; Zhu, D. Q.; Zhou, X. L. Utilization of nickel slag using selective reduction followed by magnetic separation. Trans. Nonfer. Metals. Soc. China 2013, 23, 3421–3427.

    5. [5]

      (5) Sukla, L. B.; Panda S. C.; Jena, P. K. Recovery of cobalt, nickel and copper from converter slag through roasting with ammonium sulphate and sulphuric acid. Hydrometallurgy 1986, 16, 153–165.

    6. [6]

      (6) Wang, Z. J.; Ni, W.; Jia, Y.; Zhu, L. P.; Huang, X. Y. Crystallization behavior of glass ceramics prepared from the mixture of nickel slag, blast furnace slag and quartz sand. J. Non-Cryst. Solids 2010, 356, 1554–1558.

    7. [7]

      (7) Liu, R. P.; Zhu, L. J.; He, Z.; Lan, H. C. H.; Liu, H. J.; Qu, J. H. Simultaneous removal of arsenic and fluoride by freshly-prepared aluminum hydroxide. Colloids Surf. A: Physicochem. Eng. Aspects 2015, 466, 147–153.

    8. [8]

      (8) Saitoh, T.; Yamaguchi, M.; Hiraide, M. Surfactant-coated aluminum hydroxide for the rapid removal and biodegradation of hydrophobic organic pollutants in water. Water Res. 2011, 45, 1879–1889.

    9. [9]

      (9) Barathi, M.; Santhana Krishna Kumar, A.; Rajesh, N. Aluminium hydroxide impregnated macroreticular aromatic polymeric resin as a sustainable option for defluoridation. J. Environ. Chem. Eng. 2015, 3, 630–641.

    10. [10]

      (10) Wang, W. D.; Song, S.; Zhang, X. N.; Mitchell Spear, J.; Wang, X. C.; Wang, W.; Ding, Z. Z.; Qiao, Z. X. Effects of Ni2+ on aluminum hydroxide scale formation and transformation on a simulated drinking water distribution system. Chemosphere 2014, 107, 211–217.

    11. [11]

      (11) Souza, A. D. V.; Arruda, C. C.; Fernandes, L.; Antunes, M. L. P.; Kiyohara, P. K.; Salomão, R. Characterization of aluminum hydroxide (Al(OH)3) for use as a porogenic agent in castable ceramics. J. Eur. Ceramic Soc. 2015, 35, 803–812.

    12. [12]

      (12) Villarroel-Rocha, J.; Barrera, D.; Sapag, K. Introducing a self-consistent test and the corresponding modification in the Barrett, Joyner and Halenda method for pore-size determination. Microporous Mesoporous Mater. 2014, 200, 68–78.

    13. [13]

      (13) Loni, A.; Defforge, T.; Caffull, E.; Gautier, G.; Canham, L. T. Porous silicon fabrication by anodisation: progress towards the realisation of layers and powders with high surface area and micropore content. Microporous Mesoporous Mater. 2015, 213, 188–191.

    14. [14]

      (14) Gao, Q.; Zhu, H.; Luo, W. J.; Wang, S. H.; Zhou, C. H. G. Preparation, characterization, and adsorption evaluation of chitosan-functionalized mesoporous composites. Microporous Mesoporous Mater. 2014, 193, 15–26.

    15. [15]

      (15) Wu, W.; Wan, Z. J.; Chen, W.; Zhu, M. M.; Zhang, D. K. Synthesis of mesoporous alumina with tunable structural properties. Microporous Mesoporous Mater. 2015, 217, 12–20.

    16. [16]

      (16) Ezzeddine, Z.; Batonneau-Gener, I.; Pouilloux, Y.; Hamad, H.; Saad, Z.; Kazpard, V. Divalent heavy metals adsorption onto different types of EDTA-modified mesoporous materials: effectiveness and complexation rate. Microporous Mesoporous Mater. 2015, 212, 125–136.

    17. [17]

      (17) Yu, Y.; Ruan, Y. Z.; Huang, Q. M.; Zhou, M.; Du, Y. H.; Wu, R. P. Polycrystalline structure of waste slag in aluminum factory at different calcining temperature. Chin. J. Struct. Chem. 2003, 22, 607–612.

    18. [18]

      (18) Xu, C.; Chen, B. R.; Lv. G. M.; Zhou, H.; Zeng, M.; Liao, B. H. Research progress of chemical fixation of heavy metals in soil by silicate and phosphate. Environ. Sci. Manag. 2012, 37, 164–168.

    19. [19]

      (19) Feng, L. J. The synthesis of nano-Pb(OH)2, AgCuO2 and their electrochemical performance. Beijing: Beijing University of Chemical Technology 2008, 19–24.

    20. [20]

      (20) Huang, J.; Ye, M.; Qu, Y. Q.; Chu, L. F.; Chen, R.; He, Q. Z.; Xu, D. F. Pb(II) removal from aqueous media by EDTA-modified mesoporous silica SBA-15. J. Colloid Interface Sci. 2012, 385, 137–146.

    21. [21]

      (21) Xu, D.; Tan, X. L.; Chen, C. L.; Wang, X. K. Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes. J. Hazard. Mater. 2008, 154, 407–416.

    22. [22]

      (22) Wong, K. K.; Lee, C. K.; Low, K. S.; Haron, M. J. Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions. Chemosphere 2003, 50, 23–28.

    23. [23]

      (23) Mahapatra, A.; Mishra, B. G.; Hota, G. Electrospun Fe2O3-Al2O3 nanocomposite fibers as efficient adsorbent for removal of heavy metal ions from aqueous solution. J. Hazard. Mater. 2013, 258-259, 116–123.

    24. [24]

      (24) Cai, Y.; Wu, Q.; Fu, C.; Yu, Y. Study on the structures and properties of copper removal adsorbent prepared from sinter-free pulverized oyster shell materials. Chin. J. Struct. Chem. 2014, 33, 263–269.

    25. [25]

      (25) Xie, J. L.; Luo, P.; Zheng, Y. G.; Chen, F. Y.; You, R. R.; Wu, Q. P.; Yu, Y. Study on the structure and characteristics of recyclable copper removal adsorbent. Chin. J. Struct. Chem. 2013, 32, 975–980.

    26. [26]

      (26) Wang, F. Y.; Wang, H.; Ma, J. W. Adsorption of cadmium(II) ions from aqueous solution by a new low-cost adsorbent-Bamboo charcoal. J. Hazard. Mater. 2010, 177, 300–306.

    27. [27]

      (27) Ahmad, M.; Usman, A. R. A.; Lee, S. S.; Kim, S. C.; Joo, J. H.; Yang, J. E.; Ok, Y. S. Eggshell and coral wastes as low cost sorbents for the removal of Pb2+, Cd2+ and Cu2+ from aqueous solutions. J. Indus. Eng. Chem. 2012, 18, 198–204.

    28. [28]

      (28) Lin, L.; Yu, Y. A study on the surface physicochemical properties of modified nickel slag adsorbent to remove Pb2+ and Cu2+ from aqueous solution. Journal of Fuzhou University (Natural Science Edition) 2016, 44, 119–123.

    29. [29]

      (29) Sounthararajah, D. P.; Loganathan, P.; Kandasamy, J.; Vigneswaran, S. Adsorptive removal of heavy metals from water using sodium titanate nanofibres loaded onto GAC in fixed-bed columns. J. Hazard. Mater. 2015, 287, 306–316.

    30. [30]

      (30) Puppa, L. D.; Komárek, M.; Bordas, F.; Bollinger, J. C.; Joussein, E. Adsorption of copper, cadmium, lead and zinc onto a synthetic manganese oxide. J. Colloid Interface Sci. 2013, 399, 99–106.

    31. [31]

      (31) Lv, L.; Tsoi, G.; Zhao, X. S. Uptake equilibria and mechanisms of heavy metal ions on microporous titanosilicate ETS-10. Indus. Eng. Chem. Research 2004, 43, 7900–7906.

  • 加载中
    1. [1]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    2. [2]

      Yun WeiLei ZhouWenbin HuLiming YangGuang YangChaoqiang WangHui ShiFei HanYufa FengXuan DingPenghui ShaoXubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    5. [5]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    6. [6]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    7. [7]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    8. [8]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    9. [9]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    10. [10]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    11. [11]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    12. [12]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    13. [13]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    14. [14]

      Shengyu ZhaoXuan YuYufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933

    15. [15]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    16. [16]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    17. [17]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    18. [18]

      Yuhan Wu Qing Zhao Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271

    19. [19]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    20. [20]

      Yunyu ZhaoChuntao YangYingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865

Metrics
  • PDF Downloads(0)
  • Abstract views(636)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return