Citation: LIN Liang, YU Yan. Application of Modified Nickel Slag Adsorbent on the Removal of Pb2+ and Cu2+ from Aqueous Solution[J]. Chinese Journal of Structural Chemistry, ;2016, 35(6): 879-888. doi: 10.14102/j.cnki.0254-5861.2011-1002
-
Al(OH)3 modified nickel slag adsorbent was prepared by sintering technology. The structure of the sample was characterized by BET, XRD, IR, SEM and EDAX. The sample's adsorption performance of Pb2+ and Cu2+ from aqueous solution was studied. Results indicated that the adsorbent is a loose and porous mesoporous material. Its surface had mass aluminosilicate, high-activity γ-Al2O3 and its pH ranges from 4 to 12 that all have negative charges. The BET surface of the adsorbent is 23.90 m2/g. Furthermore, its surface contains rich oxygenic functional groups, which could not only provide abundant adsorption sites for Pb2+ and Cu2+, but also improve the adsorption performance of Pb2+ and Cu2+ from waste water through the complexation of heavy metal ions. The best pH values selected in the adsorption of Pb2+ and Cu2+ are 6 and 5, respectively. With the increase of the initial concentration of simulated solution, the adsorption capacities of Pb2+ and Cu2+ gradually increased but the removal rates showed a downward trend. The competitive adsorption results of Pb2+ and Cu2+ showed that Pb2+ has better preferential adsorption than Cu2+.
-
Keywords:
- Al(OH)3 modified,
- nickel slag,
- adsorption,
- lead ion,
- copper ion
-
-
[1]
(1) Fan, L. L.; Luo, C. H. N.; Sun, M.; Li, X. J.; Qiu, H. M. Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites. Colloids and Surfaces B: Biointerfaces 2013, 103, 523–529.
-
[2]
(2) Saleh, T. A.; Gupta, V. K.; Al-Saadi, A. A. Adsorption of lead ions from aqueous solution using porous carbon derived from rubber tires: experimental and computational study. J. Colloid Interface Sci. 2013, 396, 264–269.
-
[3]
(3) Sheng, G. H.; Zhai, J. P. Making metallurgical slag from nickel industry a resource. Metal Mine. 2005, 10, 68–71.
-
[4]
(4) Pan, J.; Zheng, G. L.; Zhu, D. Q.; Zhou, X. L. Utilization of nickel slag using selective reduction followed by magnetic separation. Trans. Nonfer. Metals. Soc. China 2013, 23, 3421–3427.
-
[5]
(5) Sukla, L. B.; Panda S. C.; Jena, P. K. Recovery of cobalt, nickel and copper from converter slag through roasting with ammonium sulphate and sulphuric acid. Hydrometallurgy 1986, 16, 153–165.
-
[6]
(6) Wang, Z. J.; Ni, W.; Jia, Y.; Zhu, L. P.; Huang, X. Y. Crystallization behavior of glass ceramics prepared from the mixture of nickel slag, blast furnace slag and quartz sand. J. Non-Cryst. Solids 2010, 356, 1554–1558.
-
[7]
(7) Liu, R. P.; Zhu, L. J.; He, Z.; Lan, H. C. H.; Liu, H. J.; Qu, J. H. Simultaneous removal of arsenic and fluoride by freshly-prepared aluminum hydroxide. Colloids Surf. A: Physicochem. Eng. Aspects 2015, 466, 147–153.
-
[8]
(8) Saitoh, T.; Yamaguchi, M.; Hiraide, M. Surfactant-coated aluminum hydroxide for the rapid removal and biodegradation of hydrophobic organic pollutants in water. Water Res. 2011, 45, 1879–1889.
-
[9]
(9) Barathi, M.; Santhana Krishna Kumar, A.; Rajesh, N. Aluminium hydroxide impregnated macroreticular aromatic polymeric resin as a sustainable option for defluoridation. J. Environ. Chem. Eng. 2015, 3, 630–641.
-
[10]
(10) Wang, W. D.; Song, S.; Zhang, X. N.; Mitchell Spear, J.; Wang, X. C.; Wang, W.; Ding, Z. Z.; Qiao, Z. X. Effects of Ni2+ on aluminum hydroxide scale formation and transformation on a simulated drinking water distribution system. Chemosphere 2014, 107, 211–217.
-
[11]
(11) Souza, A. D. V.; Arruda, C. C.; Fernandes, L.; Antunes, M. L. P.; Kiyohara, P. K.; Salomão, R. Characterization of aluminum hydroxide (Al(OH)3) for use as a porogenic agent in castable ceramics. J. Eur. Ceramic Soc. 2015, 35, 803–812.
-
[12]
(12) Villarroel-Rocha, J.; Barrera, D.; Sapag, K. Introducing a self-consistent test and the corresponding modification in the Barrett, Joyner and Halenda method for pore-size determination. Microporous Mesoporous Mater. 2014, 200, 68–78.
-
[13]
(13) Loni, A.; Defforge, T.; Caffull, E.; Gautier, G.; Canham, L. T. Porous silicon fabrication by anodisation: progress towards the realisation of layers and powders with high surface area and micropore content. Microporous Mesoporous Mater. 2015, 213, 188–191.
-
[14]
(14) Gao, Q.; Zhu, H.; Luo, W. J.; Wang, S. H.; Zhou, C. H. G. Preparation, characterization, and adsorption evaluation of chitosan-functionalized mesoporous composites. Microporous Mesoporous Mater. 2014, 193, 15–26.
-
[15]
(15) Wu, W.; Wan, Z. J.; Chen, W.; Zhu, M. M.; Zhang, D. K. Synthesis of mesoporous alumina with tunable structural properties. Microporous Mesoporous Mater. 2015, 217, 12–20.
-
[16]
(16) Ezzeddine, Z.; Batonneau-Gener, I.; Pouilloux, Y.; Hamad, H.; Saad, Z.; Kazpard, V. Divalent heavy metals adsorption onto different types of EDTA-modified mesoporous materials: effectiveness and complexation rate. Microporous Mesoporous Mater. 2015, 212, 125–136.
-
[17]
(17) Yu, Y.; Ruan, Y. Z.; Huang, Q. M.; Zhou, M.; Du, Y. H.; Wu, R. P. Polycrystalline structure of waste slag in aluminum factory at different calcining temperature. Chin. J. Struct. Chem. 2003, 22, 607–612.
-
[18]
(18) Xu, C.; Chen, B. R.; Lv. G. M.; Zhou, H.; Zeng, M.; Liao, B. H. Research progress of chemical fixation of heavy metals in soil by silicate and phosphate. Environ. Sci. Manag. 2012, 37, 164–168.
-
[19]
(19) Feng, L. J. The synthesis of nano-Pb(OH)2, AgCuO2 and their electrochemical performance. Beijing: Beijing University of Chemical Technology 2008, 19–24.
-
[20]
(20) Huang, J.; Ye, M.; Qu, Y. Q.; Chu, L. F.; Chen, R.; He, Q. Z.; Xu, D. F. Pb(II) removal from aqueous media by EDTA-modified mesoporous silica SBA-15. J. Colloid Interface Sci. 2012, 385, 137–146.
-
[21]
(21) Xu, D.; Tan, X. L.; Chen, C. L.; Wang, X. K. Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes. J. Hazard. Mater. 2008, 154, 407–416.
-
[22]
(22) Wong, K. K.; Lee, C. K.; Low, K. S.; Haron, M. J. Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions. Chemosphere 2003, 50, 23–28.
-
[23]
(23) Mahapatra, A.; Mishra, B. G.; Hota, G. Electrospun Fe2O3-Al2O3 nanocomposite fibers as efficient adsorbent for removal of heavy metal ions from aqueous solution. J. Hazard. Mater. 2013, 258-259, 116–123.
-
[24]
(24) Cai, Y.; Wu, Q.; Fu, C.; Yu, Y. Study on the structures and properties of copper removal adsorbent prepared from sinter-free pulverized oyster shell materials. Chin. J. Struct. Chem. 2014, 33, 263–269.
-
[25]
(25) Xie, J. L.; Luo, P.; Zheng, Y. G.; Chen, F. Y.; You, R. R.; Wu, Q. P.; Yu, Y. Study on the structure and characteristics of recyclable copper removal adsorbent. Chin. J. Struct. Chem. 2013, 32, 975–980.
-
[26]
(26) Wang, F. Y.; Wang, H.; Ma, J. W. Adsorption of cadmium(II) ions from aqueous solution by a new low-cost adsorbent-Bamboo charcoal. J. Hazard. Mater. 2010, 177, 300–306.
-
[27]
(27) Ahmad, M.; Usman, A. R. A.; Lee, S. S.; Kim, S. C.; Joo, J. H.; Yang, J. E.; Ok, Y. S. Eggshell and coral wastes as low cost sorbents for the removal of Pb2+, Cd2+ and Cu2+ from aqueous solutions. J. Indus. Eng. Chem. 2012, 18, 198–204.
-
[28]
(28) Lin, L.; Yu, Y. A study on the surface physicochemical properties of modified nickel slag adsorbent to remove Pb2+ and Cu2+ from aqueous solution. Journal of Fuzhou University (Natural Science Edition) 2016, 44, 119–123.
-
[29]
(29) Sounthararajah, D. P.; Loganathan, P.; Kandasamy, J.; Vigneswaran, S. Adsorptive removal of heavy metals from water using sodium titanate nanofibres loaded onto GAC in fixed-bed columns. J. Hazard. Mater. 2015, 287, 306–316.
-
[30]
(30) Puppa, L. D.; Komárek, M.; Bordas, F.; Bollinger, J. C.; Joussein, E. Adsorption of copper, cadmium, lead and zinc onto a synthetic manganese oxide. J. Colloid Interface Sci. 2013, 399, 99–106.
-
[31]
(31) Lv, L.; Tsoi, G.; Zhao, X. S. Uptake equilibria and mechanisms of heavy metal ions on microporous titanosilicate ETS-10. Indus. Eng. Chem. Research 2004, 43, 7900–7906.
-
[1]
-
-
[1]
Shuanglin TIAN , Tinghong GAO , Yutao LIU , Qian CHEN , Quan XIE , Qingquan XIAO , Yongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482
-
[2]
Yun Wei , Lei Zhou , Wenbin Hu , Liming Yang , Guang Yang , Chaoqiang Wang , Hui Shi , Fei Han , Yufa Feng , Xuan Ding , Penghui Shao , Xubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172
-
[3]
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
-
[4]
Linhui Liu , Wuwan Xiong , Mingli Fu , Junliang Wu , Zhenguo Li , Daiqi Ye , Peirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870
-
[5]
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
-
[6]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[7]
Jingke LIU , Jia CHEN , Yingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060
-
[8]
Linshan Peng , Qihang Peng , Tianxiang Jin , Zhirong Liu , Yong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891
-
[9]
Xue Zhao , Mengshan Chen , Dan Wang , Haoran Zhang , Guangzhi Hu , Yingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327
-
[10]
Shuqi Yu , Yu Yang , Keisuke Kuroda , Jian Pu , Rui Guo , Li-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130
-
[11]
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
-
[12]
Lumin Zheng , Ying Bai , Chuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589
-
[13]
Shengyu Zhao , Qinhao Shi , Wuliang Feng , Yang Liu , Xinxin Yang , Xingli Zou , Xionggang Lu , Yufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606
-
[14]
Shengyu Zhao , Xuan Yu , Yufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933
-
[15]
Ruilong Geng , Lingzi Peng , Chang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433
-
[16]
Yue Li , Minghao Fan , Conghui Wang , Yanxun Li , Xiang Yu , Jun Ding , Lei Yan , Lele Qiu , Yongcai Zhang , Longlu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764
-
[17]
Ruiying Liu , Li Zhao , Baishan Liu , Jiayuan Yu , Yujie Wang , Wanqiang Yu , Di Xin , Chaoqiong Fang , Xuchuan Jiang , Riming Hu , Hong Liu , Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332
-
[18]
Yuhan Wu , Qing Zhao , Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271
-
[19]
Deshuai Zhen , Chunlin Liu , Qiuhui Deng , Shaoqi Zhang , Ningman Yuan , Le Li , Yu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249
-
[20]
Yunyu Zhao , Chuntao Yang , Yingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(636)
- HTML views(11)