Citation: ZHANG Xin, SUN Ming-Ling, QIN Ye-Yan, YAO Yuan-Gen. Hydrothermal Synthesis, Crystal Structure and Luminescent Property of a Cd(II) Compound with (4,6)-Connected Topology[J]. Chinese Journal of Structural Chemistry, ;2016, 35(6): 914-920. doi: 10.14102/j.cnki.0254-5861.2011-1001 shu

Hydrothermal Synthesis, Crystal Structure and Luminescent Property of a Cd(II) Compound with (4,6)-Connected Topology

  • Corresponding author: YAO Yuan-Gen, 
  • Received Date: 9 September 2015
    Available Online: 28 October 2015

    Fund Project: Supported by the 973 Program of China (2011CBA00505) (2011CBA00505) the "Strategic Priority Research Program" of the Chinese Academy of Sciences (XDA07070200, XDA09030102) (XDA07070200, XDA09030102)

  • A new Cd(II) coordination polymer, namely {Cd2(L)(biimpy)(H2O)}n (1, H4L = 3-(3',5'-dicarboxylphenoxy)phthalic acid, biimpy = 2,6-bis(1-imdazoly)pyridine), has been success- fully synthesized via the hydrothermal reactions of Cd(II) ions, H4L and biimpy. The crystal structure is of triclinic, space group P with a = 7.7874(5), b = 9.9716(5), c = 18.5278(6) Å, α = 91.327(4), β = 96.689(4), γ = 111.896(5)°, V = 1322.39(12) Å3, C27H17Cd2N5O10, Mr = 796.26, Z = 2, Dc = 2.000 g/cm3, F(000) = 780, μ = 1.679 mm-1, R = 0.0345 and wR = 0.0767 for 3890 observed reflections (I > 2s(I)). Single-crystal X-ray structural analysis reveals that compound 1 features a three-dimensional (3D) framework based on two different dinuclear [Cd2(COO)2] building subunits, and topological analysis shows that it can be simplified into a binodal (4,6)-connected topological network with the point symbol of {3.42.52.6}{32.42.52.64.74.8}. Moreover, the thermal stability and luminescent property of compound 1 were also studied.
  • 加载中
    1. [1]

      (1) Zhang, X. J.; Wang, W. J.; Hu, Z. J.; Wang, G. N.; Uvdal, K. S. Coordination polymers for energy transfer: preparations, properties, sensing applications, and perspectives. Coord. Chem. Rev. 2015, 284, 206–235.

    2. [2]

      (2) Chen, W. T. Synthesis, and characterization of a novel cadmium-biimidazole compound with a 1-D chain-like motif. Synth. React. Inorg. M 2015, 45, 315–318.

    3. [3]

      (3) Yun, R. R.; Lu, Z. Y.; Pan, Y.; You, X. Z.; Bai, J. F. Formation of a metal-organic framework with high surface area and gas uptake by breaking edges off truncated cuboctahedral cages. Angew. Chem. Int. Ed. 2013, 52, 11282-11285.

    4. [4]

      (4) Yao, Z. L.; Chen, W. T.; Hu, R. H. Photoluminescence and theoretical study of [∞(Cd2Cl6)][2(CdCl4]][3(N,N'-dimethyl)-4,4'-bipyridinium)]. Indian J. Chem. Sec. A 2015, 54, 489–493.

    5. [5]

      (5) Feng, X.; Wen, Y. H.; Lan, Y. Z.; Feng, Y. L.; Pan, C. Y.; Yao, Y. G., Multifunctional zinc(II) urocanate with rare fivefold interpenetrating diamondoid network. Inorg. Chem. Commun. 2009, 89–91.

    6. [6]

      (6) Luo, F.; Wang, M. S.; Luo, M. B.; Sun, G. M.; Song, Y. M.; Li, P. X.; Guo, G. C. Functionalizing the pore wall of chiral porous metal-organic frameworks by distinct -H, -OH, -NH2, -NO2, -COOH shutters showing selective adsorption for CO2, tunable photoluminescence and direct white emission. Chem. Commun. 2012, 48, 5989–5991.

    7. [7]

      (7) Chen, Y. F.; Ma, Y. C.; Chen, S. M. A chiral tetrahedral guests for catalysis and photoluminescence. Cryst. Growth & Des. 2013, 13, 4154–4157.

    8. [8]

      (8) Mulfort, K. L.; Farha, O. K.; Malliakas, C. D.; Kanatzidis, M. G.; Hupp, J. An interpenetrated framework material with hysteretic CO2 uptake. Chem. Eur. J. 2010, 16, 276–281.

    9. [9]

      (9) Zhang, X.; Huang, Y. Y.; Lin, Q. P.; Zhang, J.; Yao, Y. G. Using alkaline-earth metal ions to tune structural variations of coordination polymers. Dalton Trans. 2013, 42, 2294–2301.

    10. [10]

      (10) Zhang, X.; Huang, Y. Y.; Zhang, M. J.; Zhang, J.; Yao, Y. G. A series of Ca(II) or Ba(II) inorganic-organic hybrid frameworks based on aromatic polycarboxylate ligands with the inorganic M-O-M (M = Ca, Ba) connectivity from 1D to 3D. Cryst. Growth Des. 2012, 12, 3231–3238.

    11. [11]

      (11) Guo, F.; Wang, F.; Yang, H.; Zhang, X.; Zhang, J. Tuning structural topologies of three photoluminescent metal-organic frameworks via isomeric biphenyl-dicarboxylates. Inorg. Chem. 2012, 51, 9677–9682.

    12. [12]

      (12) Zhang, X.; Huang, Y. Y.; Cheng, J. K.; Yao, Y. G.; Zhang, J.; Wang, F. Alkaline-earth metal ion doped Zn(II)-terephthalates. CrystEngComm. 2012, 14, 4843–4849.

    13. [13]

      (13) Yang, J. X.; Zhang, X.; Cheng, J. K.; Zhang, J.; Yao, Y. G. pH influence on the structural variations of 4,4'-oxydiphthalate coordination polymers. Cryst. Growth Des. 2012, 12, 333–345.

    14. [14]

      (14) Guo, F.; Zhu, B. Y.; Xu, G. L.; Zhang, M. M.; Zhang, X. L.; Zhang, J. Tuning structural topologies of five photoluminescent Cd(II) coordination polymers through modifying the substitute group of organic ligand. J. Solid State Chem. 2013, 199, 42–48.

    15. [15]

      (15) Bu, X. Z.; Wei, Z. W.; Ren, S. F. Synthesis, structures and magnetic properties of two isomeric coordination polymers constructed from pamoic acid and 1,2-di(4-pyridyl)ethane. J. Coord. Chem. 2015, 68, 471–478.

    16. [16]

      (16) Zhang, J.; Chew, E.; Chen, S. M.; Jimmy, T. H. P.; Bu, X. H. Three-dimensional homochiral transition-metal camphorate architectures directed by a flexible auxiliary ligand. Inorg. Chem. 2008, 47, 3495–3497.

    17. [17]

      (17) Zhang, J.; Chen, Y. B.; Li, Z. J.; Cheng, J. K.; Kang, Y.; Yao, Y. G. A polar luminescent Zn polymer containing an unusual noninterpenetrated utp net. Inorg. Chem. 2006, 45, 3161–3163.

    18. [18]

      (18) Guo, J. S.; Xu, G.; Wang, S. H.; Wang, M. S.; Zhang, M. J.; Guo, G. C.; Huang, J. S. Blue emission of a 2D non-interpenetrated zinc coordination polymer constructed through saturated fatty acid ligand. Inorg. Chem. Comm. 2014, 45, 108–111.

    19. [19]

      (19) Yang, D. L.; Zhang, X.; Yang, J. X.; Yao, Y. G.; Zhang, J. Alkali/alkaline earth metal and solvents-regulated construction of novel heterometallic coordination polymers based on a semirigid ligand and tetranuclear metal clusters. Inorg. Chim. Acta 2014, 423, 62–71.

    20. [20]

      (20) Li, X. H.; Zhou, P. P.; Dong, Y. L.; Liu, H. M. Structural diversity of a series of 2D Zn(II) coordination polymers tuned by different dicarboxylic acids ligands. J. Inorg. Organomet. Polym. 2015, 25, 650–656.

    21. [21]

      (21) Sheldrick, G. M. SADABS, Program for Area Detector Adsorption Correction. Institute for Inorganic Chemistry, University of Göttingen: Göttingen, Germany 1996.

    22. [22]

      (22) Sheldrick, G. M. SHELXS-97, Program for Solution of Crystal Structure. University of Göttingen: Göttingen, Germany 1997.

    23. [23]

      (23) Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structure. University of Göttingen: Göttingen, Germany 1997.

    24. [24]

      (24) Qiao, L. Y.; Zhang, X.; Yang, J. X.; Li, Z. J.; Yao, Y. G. Synthesis, structure and topological analysis of a new zinc(II) complex [Zn2(bptc)(bpe)(H2O)]n. Chin. J. Struct. Chem. 2011, 30, 1006–1010.

    25. [25]

      (25) Ma, D. X.; Li, B. Y.; Zhou, X. J.; Zhou, Q.; Liu, K.; Zeng, G.; Li, G. H.; Shi, Z.; Feng, S. H. A dual functional MOF as a luminescent sensor for quantitatively detecting the concentration of nitrobenzene and temperature. Chem. Comm. 2013, 49, 8964–8966.

    26. [26]

      (26) Li, L. N.; Zhang, S. Q.; Xu, L. J.; Han, L.; Chen, Z. N.; Luo, J. H. An intensely luminescent metal-organic framework based on a highly light-harvesting dyclo-metalated iridium(III) unit showing effective detection of explosives. Inorg. Chem. 2013, 52, 12323–12325.

    27. [27]

      (27) Yang, D. L.; Zhang, X.; Zhang, J.; Yao, Y. G. Structure versatility of coordination polymers constructed from a semirigid ligand and polynuclear metal clusters. CrystEngComm. 2014, 16, 8047–8057.

    28. [28]

      (28) Gong, Y. Q.; Mi, T. Q.; Jiang, F. L. Synthesis, crystal structure and photoluminescence of a Zn(II) coordination polymer derived from 1,1'-biphenyl-2,2',6,6'-tetracarboxylic acid. Chin. J. Struct. Chem. 2015, 34, 1087–1091.

  • 加载中
    1. [1]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    2. [2]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    3. [3]

      Yongjing DengFeiyang LiZijian ZhouMengzhu WangYongkang ZhuJianwei ZhaoShujuan LiuQiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085

    4. [4]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    5. [5]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    6. [6]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    7. [7]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    8. [8]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    9. [9]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    10. [10]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    11. [11]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    12. [12]

      Yi ZhuJingyan ZhangYuchao ZhangYing ChenGuanghui AnRen Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573

    13. [13]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

    14. [14]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    15. [15]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    16. [16]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    17. [17]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    18. [18]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    19. [19]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

    20. [20]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

Metrics
  • PDF Downloads(0)
  • Abstract views(666)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return