Citation: YUE Cheng-Yang, ZHANG Hui-Ping, LU Xin-Xiu, BAI Yi-Qun, SHI Hao, XU Xin. Solvothermal Syntheses and Characterizations of Two New Sliver Selenidoantimonates of Ag3SbSe3 and Ag5SbSe4[J]. Chinese Journal of Structural Chemistry, ;2016, 35(2): 227-236. doi: 10.14102/j.cnki.0254-5861.2011-0997 shu

Solvothermal Syntheses and Characterizations of Two New Sliver Selenidoantimonates of Ag3SbSe3 and Ag5SbSe4

  • Received Date: 3 October 2015
    Available Online: 30 December 2015

    Fund Project:

  • Two new sliver selenidoantimonates, namely, Ag3SbSe3 and Ag5SbSe4, were prepared under mid solvothermal conditions and structurally characterized by single-crystal X-ray diffraction studies. Ag3SbSe3 crystallizes in the orthorhombic space group Pnma (No. 62) with a = 8.2414(12), b = 11.4925(17), c = 21.220(3) Å, V = 2009.8(5) Å3 and Z = 12. Its structure belongs to the β-Ag3AsSe3 type and features a 3D complex network composed of distorted trigonal planar AgSe3 and tetrahedral AgSe4 units as well as SbSe3 trigonal pyramids. Ag5SbSe4 crystallizes in the orthorhombic system, nocentrosymmetric space group Cmc21 (No. 36) with a = 8.1148(6), b = 12.9829(10), c = 8.7017(7) Å, V = 916.76(12) Å3 and Z = 4. Its structure adopts the Ag5SbS4 type and features a 3D framework based on trigonal planar AgSe3 units and SbSe3 trigonal pyramids. The results of optical absorption spectra and band structure calculations indicate that the title compounds are narrow band-gap semiconductors.
  • 加载中
    1. [1]

      (1) Zhang, Y.; Ke, X. Z.; Chen, C. F.; Yang, J.; Kent, P. R. C. Thermodynamic properties of PbTe, PbSe, and PbS: first-principles study. Physical Review B 2009, 80, 024304-024307.

    2. [2]

      (2) Yue, C. Y.; Lei, X. W.; Ma, Y. X.; Sheng, N.; Yang, Y. D.; Liu, G. D.; Zhai, X. R. [TM(en)3][SnSb4S9] (TM = Ni, Co): 3D chiral framework of mixed main-group metals and [Mn(dien)2]2Sb4S9: 1D chains with mixed-valent Sb centers. Cryst. Growth Des. 2014, 14, 101-109.

    3. [3]

      (3) Ovsyannikov, S. V.; Shchennikov, V. V. High-pressure routes in the thermoelectricity or how one can improve a performance of thermoelectrics. Chem. Mater. 2010, 22, 635-647.

    4. [4]

      (4) Kovalenko, M. V.; Spokoyny, B.; Lee, J. S.; Scheele, M.; Weber, A.; Perera, S.; Landry, D.; Talapin, D. V. Semiconductor nanocrystals functionalized with antimony telluride zintl ions for nanostructured thermoelectrics. J. Am. Chem. Soc. 2010, 132, 6686-6695.

    5. [5]

      (5) Kastbjerg, S.; Bindzus, N.; Søndergaard, M.; Johnsen, S.; Lock, N.; Christensen, M.; Takata, M.; Spackman, M. A.; Iversen, B. B. Direct evidence of cation disorder in thermoelectric lead chalcogenides PbTe and PbS. Adv. Funct. Mater. 2013, 23, 5477-5483.

    6. [6]

      (6) May, A. F.; Fleurial, J. P.; Snyder, G. J. Optimizing thermoelectric efficiency in La3-xTe4 via Yb substitution. Chem. Mater. 2010, 22, 2995-2999.

    7. [7]

      (7) Lei, X. W.; Yue, C. Y.; Zhao, J. Q. ; Han, Y. F.; Yang, J. T.; Meng, R. R.; Gao, C. S.; Ding, H.; Wang, C. Y.; Chen, W. D.; Hong, M. C. Two types of 2D layered iodoargentates based on trimeric [Ag3I7] secondary building units and hexameric [Ag6I12] ternary building units: syntheses, crystal structures, and efficient visible light responding photocatalytic properties. Inorg. Chem. 2015, 54, 10593-10603.

    8. [8]

      (8) Majumdar, A. Thermoelectricity in semiconductor nanostructures. Science 2004, 303, 777-778.

    9. [9]

      (9) Zhao, H. J.; Li, L. H.; Wu, L. M.; Chen, L. Syntheses, crystal and electronic structures, and physical properties of quaternary semiconductors: Ln2Mn3Sb4S12 (Ln = Pr, Nd, Sm, Gd). L. Inorg. Chem. 2010, 49, 5811-5817.

    10. [10]

      (10) Stähler, R.; Bensch, W. Solvothermal synthesis and crystal structure of the new layered thioantimonate(III) [Ni(C4H13N3)2]9Sb22S42·0.5H2O: interconnection of the SbS3, SbS4, and SbS5 primary building units yielding the very large Sb30S30 heteroring. Z. Anorg. Allg. Chem. 2002, 628, 1657-1662.

    11. [11]

      (11) Du, B. L.; Li, H.; Xu, J. J.; Tang, X. F.; Uher, C. Enhanced figure-of-merit in Se-doped p-type AgSbTe2 thermoelectric compound. C. Chem. Mater. 2010, 22, 5521-5527.

    12. [12]

      (12) Yue, C. Y.; Yuan, Z. D.; Zhang, L. G.; Wang, Y. B.; Liu, G. D.; Gong, L. K.; Lei, X. W. Synthesis, crystalstructureandpropertiesof[(dien)2Mn]Ge2S4 with mixed-valent Ge centers. J. Solid State Chem. 2013, 206, 129-133.

    13. [13]

      (13) Chung, M. Y.; Lee, C. S. Multinary selenides with unusual coordination environment of bismuth. Inorg. Chem. 2012, 51, 13328-13333.

    14. [14]

      (14) Yue, C. Y.; Lei, X. W.; Yin, L.; Zhai, X. R.; Ba, Z. R.; Niu, Y. Q.; Li, Y. P. [Mn(dien)2]MnSnS4, [Mn(1,2-dap)]2Sn2S6 and [Mn(en)2]MnGeS4: from 1D anionic and neutral chains to 3D neutral frameworks. CrystEngComm. 2015, 17, 814-823.

    15. [15]

      (15) Yue, C. Y.; Lei, X. W.; Feng, L. J.; Wang, C.; Gong, Y. P.; Liu, X. Y. [Mn2Ga4Sn4S20]8- T3 supertetrahedral nanocluster directed by a series of transition metal complexes. Dalton Trans. 2015, 44, 2416-2424.

    16. [16]

      (16) Yao, H. G.; Ji, M.; Ji, S. H.; Zhang, R. C.; An, Y. L.; Ning, G. L. Solvothermal syntheses of two novel layered quaternary silver-antimony(III) sulfides with different strategies. Crystal Growth & Design 2009, 9, 3821-3824.

    17. [17]

      (17) Yue, C. Y.; Lei, X. W.; Zang, H. P.; Zhai, X. R.; Feng, L. J.; Zhao, Z. F.; Zhao, J. Q.; Liu, X. Y. Two manganese-amine complexes incorporating thioantimonates and exhibiting diversiform roles of amine ligands. CrystEngComm. 2014, 16, 3424-3430.

    18. [18]

      (18) Vaqueiro, P.; Chippindale, A. M.; Cowley, A. R.; Powell, A. V. Templated synthesis of the novel layered silver-antimony sulfides [H3NCH2CH2NH2][Ag2SbS3] and [H3NCH2CH2NH2]2[Ag5Sb3S8]. Inorg. Chem. 2003, 42, 7846-7851.

    19. [19]

      (19) Powell, A. V.; Thun, J.; Chippindale, A. M. Directing the structures of silver-antimony sulphides: a new topological variant of the [Ag5Sb3S8]2- double layer. J. Solid State Chem. 2005, 178, 3414-3419.

    20. [20]

      (20) Spetzler, V.; Näther, C.; Bensch, W. The new silver(I) thioantimonate(III) [C4N2H14][Ag3Sb3S7] and a new structural variant of the silver(I) thioantimonate(III) [C2N2H9]2[Ag5Sb3S8] both synthesized under solvothermal conditions. J. Solid State Chem. 2006, 179, 3541-3549.

    21. [21]

      (21) Seidlhofer, B.; Spetzler, V.; Quiroga-Gonzalez, E.; Näther, C.; Bensch, W. New thioantimonates(III) with different Sb:S ratios: solvothermal syntheses and crystal structures of [(C3H10NO)(C3H10N)][Sb8S13], [(C2H8NO)(C2H8N)(CH5N)][Sb8S13], [(C6H16N2)(C6H14N2)][Sb6S10], and [C8H22N2][Sb4S7]. Z. Anorg. Allg. Chem. 2011, 637, 1295-1303.

    22. [22]

      (22) Spetzler, V.; Näther, C.; Bensch, W. Template-assisted solvothermal synthesis of five copper(I)-thioantimonate(III) composites: crystal structures and optical and thermal properties of (C6N2H18)0.5Cu2SbS3, (C4N3H15)0.5Cu2SbS3, (C8N4H22)0.5Cu2SbS3, (C4N3H14)Cu3Sb2S5, and (C6N4H20)0.5Cu3Sb2S5. Inorg. Chem. 2005, 44, 5805-5812.

    23. [23]

      (23) Yue, C. Y.; Lei, X. W.; Liu, R. Q.; Zhang, H. P.; Zhai, X. R.; Li, W. P.; Zhou, M.; Zhao, Z. F.; Ma, Y. X.; Yang, Y. D. Syntheses, crystal structures, and photocatalytic properties of a series of mercury thioantimonates directed by transition metal complexes. Cryst. Growth Des. 2014, 14, 2411-2421.

    24. [24]

      (24) Zhang, M.; Sheng, T. L.; Wang, X.; Hu, S. M.; Fu, R. B.; Chen, J. S.; He, Y. M.; Qin, Z. T.; Shen, C. J.; Wu, X. T. Synthesis and crystal structure of two new heterometallic thioantimonates(III) [Ni(pda)2]CuI4SbIII2S6 and [Ni(dien)2]CuISbIII3S6. CrystEngComm. 2010, 12, 73-76.

    25. [25]

      (25) Zhang, C.; Ji, M.; Ji, S. H.; An, Y. L. Mild solvothermal syntheses and characterization of layered copper thioantimonates(III) and thioarsenate(III). Inorg. Chem. 2014, 53, 4856-4860.

    26. [26]

      (26) Wang, K. Y.; Zhou, L. J.; Feng, M. L.; Huang, X. Y. Assembly of novel organic-decorated quaternary TM-Hg-Sb-Q compounds (TM = Mn, Fe, Co; Q = S, Se) by the combination of three types of metal coordination geometries. Dalton Trans. 2012, 41, 6689-6695.

    27. [27]

      (27) Tang, W. W.; Tang, C. Y.; Wang, F.; Chen, R. H.; Zhang, Y.; Jia, D. X. Solvothermal syntheses, crystal structures, and properties of new mercury(II)-thioantimonates(III) and a mixed-valent thioantimonate(III, V). J. Solid State Chem. 2013, 199, 287-294.

    28. [28]

      (28) Wang, K. Y.; Ye, D.; Zhou, L. J.; Feng, M. L.; Huang, X. Y. Novel mercury selenidoantimonates with structures ranging from one-dimensional ribbon to three-dimensional open-framework. Dalton Trans. 2013, 42, 5454-5461.

    29. [29]

      (29) Yang, B.; Wang, L.; Han, J.; Zhou, Y.; Song, H. B.; Chen, S. Y.; Zhong, J.; Lv, L.; Niu, D. M.; Tang, J. CuSbS2 as a promising earth-abundant photovoltaic absorber material: a combined theoretical and experimental study. Chem. Mater. 2014, 26, 3135-3143.

    30. [30]

      (30) Ramasamy, K.; Gupta, R. K.; Palchoudhury, S.; Ivanov, S.; Gupta, A. Layer-structured copper antimony chalcogenides (CuSbSexS2-x): stable electrode materials for supercapacitors. Chem. Mater. 2015, 27, 379-386.

    31. [31]

      (31) Ramasamy, K.; Sims, H.; Butler, W. H.; Gupta, A. Mono-, few-, and multiple layers of copper antimony sulfide (CuSbS2): a ternary layered sulfide. J. Am. Chem. Soc. 2014, 136, 1587-1598.

    32. [32]

      (32) Suehiro, S.; Horita, K.; Yuasa, M.; Tanaka, T.; Fujita, K.; Ishiwata, Y.; Shimanoe, K.; Kida, T. Synthesis of copper-antimony-sulfide nanocrystals for solution-processed solar cells. Inorg. Chem. 2015, 54, 7840-7845.

    33. [33]

      (33) Sheldrick, G. M. SHELX-97 Program for Crystal Structure Determination 1997.

    34. [34]

      (34) Blaha, P.; Schwarz, K.; Madsen, G. K. H.; Kvasnicka, D.; Luitz, J. WIEN2k, an augmented plane wave + local orbitals program for calculating crystal properties (Karlheinz Schwarz, Techn. Universität Wien, Austria) 2001.

    35. [35]

      (35) Kanatzidis, M. G.; Chou, J. H. Isolation of β-Ag3AsSe3, (Me3NH)[Ag3As2Se5], K5Ag2As3Se9, and KAg3As2S5: novel solid state silver thio- and selenoarsenates from solvento-thermal synthesis. J. Solid State Chem. 1996, 127, 186-201.

  • 加载中
    1. [1]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    2. [2]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    3. [3]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    4. [4]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    5. [5]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    6. [6]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    7. [7]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    8. [8]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    9. [9]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    10. [10]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    11. [11]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    12. [12]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    13. [13]

      Yan XUSuzhi LIYan LILushun FENGWentao SUNXinxing LI . Structure variation of cadmium naphthalene-diphosphonates with the changing rigidity of N-donor auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 395-406. doi: 10.11862/CJIC.20240226

    14. [14]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    15. [15]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    16. [16]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    17. [17]

      Yinling HOUJia JIHong YUXiaoyun BIANXiaofen GUANJing QIUShuyi RENMing FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251

    18. [18]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    19. [19]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    20. [20]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

Metrics
  • PDF Downloads(0)
  • Abstract views(995)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return