Citation: ZHAO Qiang, SHEN Zhi, LIU Wen-Min, SONG Hui-Zhen, HE Ze-Ying. Crystal Structure and Spectroscopic Analysis of Polypyridyl Quinoxaline with Ce(III) and Nd(III)[J]. Chinese Journal of Structural Chemistry, ;2016, 35(6): 939-945. doi: 10.14102/j.cnki.0254-5861.2011-0988 shu

Crystal Structure and Spectroscopic Analysis of Polypyridyl Quinoxaline with Ce(III) and Nd(III)

  • Received Date: 28 September 2015
    Available Online: 8 January 2016

    Fund Project: This work was supported by the NNSFC (21301100) (21301100) the Education Department Fund of Henan (13A150819) (13A150819)Special fund of Nanyang Normal University (ZX2013029) (ZX2013029)

  • Two high coordination crystals were obtained by the interaction of Ce3+ and Nd3+ with polypyridyl quinoxaline ligand 2,3,6,7,10,11-hexakis(2-pyridyl)dipyrazino[2,3-f:20,30-h]qui- noxaline (HPDQ), and they were characterized. Complex 1 exhibits a 0 dimensional three-nuclear structure, with the three Ce(III) atoms being ten-, eleven- and twelve-coordinated. Complex 2 is a 0 dimensional dual-core structure and the Nd(III) atom is ten-coordinated. Complex 1 is of mono- clinic system, space group P2/c with a = 16.850(3), b = 16.617(3), c = 24.017(5) Å, β = 100.94(3)o, V = 6602(2) Å3, Z = 4, S = 1.062, F(000) = 3372, R = 0.0504 and wR = 0.1463 (I> 2σ(I)). Complex 2 adopts a monoclinic system, space group C2/c with a = 25.795(5), b = 20.166(4), c = 13.059(3) Å, β = 112.29(3)o, V = 6286(2) Å3, Z = 4, S = 1.004, F(000) = 2664, R = 0.0663 and wR = 0.1821 (I > 2σ(I)). Furthermore, the behaviors of HPDQ with Ce3+ and Nd3+ in the solution are also investigated. After the Ce3+ is added, the ultraviolet absorption of the solution is enhanced with a red shift compared with that of the HPDQ ligand. While after adding Nd3+, the ultraviolet absorption of the solution is weakened, and it has a red shift which is the same as Ce3+. However, after the respective addition of metal ions, the emission of all solutions is quenched and has a red shift compared with that of the HPDQ ligand.
  • 加载中
    1. [1]

      (1) Woodruff, D. N.; Winpenny, R. E. P.; Layfield, R. A. Lanthanide single-molecule magnets. Chem. Rev. 2013, 113, 5110–5148.

    2. [2]

      (2) Sumida, K.; Rogow, D. L.; Mason, J. A. Carbon dioxide capture in metal-organic frameworks. Chem. Rev. 2012, 112, 724–781.

    3. [3]

      (3) Kahn, O. Chemistry and physics of supramolecular magnetic materials. Acc. Chem. Res. 2000, 33, 647–657.

    4. [4]

      (4) Kesanli, B.; Cui, Y.; Smith, M. R.; Bittner, E. W.; Bockrath, B. C.; Lin, W. B. Highly interpenetrated metal-organic frameworks for hydrogen storage. Angew. Chem. Int. Edit. 2004, 44, 72–75.

    5. [5]

      (5) Thielemann, D. T.; Wagner, A. T.; Rösch, E.; Kölmel, D. K.; Heck, J. G.; Rudat, B.; Neumaier, M.; Feldmann, C.; Schepers, U.; Bräse, S.; Roesky, P. W. Luminescent cell-penetrating pentadecanuclear lanthanide clusters. J. Am. Chem. Soc. 2013, 135, 7454–7457.

    6. [6]

      (6) Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K. Luminescent metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1330–1352.

    7. [7]

      (7) Liu, Y. C.; Lin, P.; Du, S. W. Two novel homochiral enantiomorphicanic 3D metal-organic frameworks: synthesis, crystal structure, luminescent and SHG properties. Chin. J. Struct. Chem. 2013, 10, 1509–1516.

    8. [8]

      (8) Eliseeva, S. V.; Bunzli, J. C. G. Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 2010, 39, 189–227.

    9. [9]

      (9) Harbuzaru, B. V.; Corma, A.; Rey, F.; Atienzar, P.; Jorda, J. L.; Garcia, H.; Ananias, D.; Carlos, L. D.; Rocha, J. Metal-organic nanoporous structures with anisotropic photoluminescence and magnetic properties and their use as sensors. Angew. Chem. Int. Edit. 2008, 47, 1080–1083.

    10. [10]

      (10) Cui, Y. J.; Yue, Y. F.; Qian, G. D.; Chen, B. L. Luminescent functional metal-organic frameworks. Chem. Rev. 2012, 112, 1126–1162.

    11. [11]

      (11) Guo, Z. G.; Liu, Y. A one-dimensional metal-organic framework of Eu(III) from triazine-based flexible polycarboxylate and bidentate nitrogen donor Ligand. Chin. J. Struct. Chem. 2015, 1, 103–109.

    12. [12]

      (12) Wang, J.; Zhao, X. Q. Recent advances of lanthanide-transition heterometallic coordination polymers. Chin. J. Struct. Chem. 2014, 33, 7-18.

    13. [13]

      (13) Schuetz, S. A.; Erdmann, M. A.; Day, V. W.; Clark, J. L.; Belot, J. A. Anhydrous tetranuclear, dinuclear, and dimeric lanthanide complexes bearing tetradentate Schiff bases. Inorg. Chim. Acta 2004, 357, 4045-4056.

    14. [14]

      (14) Gu, X. Y.; Han, X. Z.; Yao, Y. M.; Zhang, Y.; Shen, Q. Synthesis and characterization of lanthanide complexes bearing a ferrocene-containing N-aryloxo-β-ketoiminate ligand. J. Organomet. Chem. 2010, 695, 2726-2731.

    15. [15]

      (15) Huang, Y. H.; Sheng, T. L.; Fu, R. B.; Hu, S. M.; Shen, C. J.; Zhu, Q. L.; Ma, X.; Wu, X. T. Syntheses and crystal structures of a series of coordination complexes derived from the fluorescein ligand. Chin. J. Struct. Chem. 2011, 2, 230-234.

    16. [16]

      (16) Wang, X. L.; Bao, X.; Wei, Y. J.; Wang, F. W.; Chen, Y. H.; Xu, P. P. Two tri-spin complexes based on lanthanide (LnIII = DyIII and TbIII) and nitronyl nitroxide radicals: syntheses, structures and properties. Chin. J. Struct. Chem. 2013, 32, 805-810.

    17. [17]

      (17) Qiao, X. F.; Yan, B. Assembly, characterization and photoluminescence of hybrids containing europium(III) complexes covalently bonded to inorganic Si–O networks/organic polymers by modified β-diketone. J. Phys. Chem. B 2008, 112, 14742–14750.

    18. [18]

      (18) Zhang, H.; Zhou, L.; Wei, J.; Li, Z.; Lin, P.; Du, S. Highly luminescent and thermostable lanthanide-carboxylate framework materials with helical configurations. J. Mater. Chem. 2012, 22, 21210–21217.

    19. [19]

      (19) Zhao, Q.; Li, R. F.; Xing, S. K.; Liu, X. M.; Hu, T. L.; Bu, X. H. A highly selective on/off fluorescence sensor for cadmium (II). Inorg. Chem. 2011, 50, 10041–10046.

    20. [20]

      (20) Zhao, Q.; Liu, X. M.; Song, W. C.; Bu, X. H. Valence-induced assembly of CuI-CuII ions into different discrete coordination architectures by a disk-shaped polypyridyl ligand. Dalton Trans. 2012, 41, 6683-6688.

    21. [21]

      (21) SAINT Software Reference Manual; Bruker AXS: Madison, WI 1998.

    22. [22]

      (22) Sheldrick, G. M. SHELXTL-97, Program for X-ray Crystal Structure Solution. University of Göttingen, Germany 1997.

    23. [23]

      (23) Bruker AXS Inc., Madison, WI 2002, SADABS, Software for Empirical Absorption Correction, Version 2.03

    24. [24]

      (24) Spek, A. L. PLATON, Utrecht University, Utrecht, the Netherlands 2006.

    25. [25]

      (25) Tan, C. H.; Yang, S. H.; Champness, N. R.; Lin, X.; Blake, A. J.; Lewis, W.; Schroder, M. High capacity gas storage by a 4,8-connected metal-organic polyhedral framework. Chem. Commun. 2011, 47, 4487-4489.

    26. [26]

      (26) Ji, W. J.; Zhai, Q. G.; Li, S. N.; Jiang, Y. C.; Hu, M. C. An anionic metal-organic framework based on infinite [In3(μ3-OH)2]n inorganic chains synthesized in ionic liquid. Inorg. Chem. Commun. 2013, 28, 16–19.

    27. [27]

      (27) Yang, E.; Ding, Q. R.; Kang, Y.; Wang, F. Synthesis and characterization of homo- and heterometallic metal-organic frameworks based on 1,2,4,5-benzenetetracarboxylate ligand. Inorg. Chem. Commun. 2013, 36, 195–198.

    28. [28]

      (28) Xu, B.; Ji, X. X.; Cai, Y.; Li, L.; Liu, G. N.; Li, C. C. Structure and luminescent property of a zinc(II) complex assembled from 5-methylisophthalic acid and 1,2-bis-(4-pyridyl)ethane. J. Mol. Struct. 2014, 1056, 52–55.

  • 加载中
    1. [1]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    2. [2]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    3. [3]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    4. [4]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    5. [5]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    6. [6]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    7. [7]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    8. [8]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    9. [9]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    10. [10]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    11. [11]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    12. [12]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    13. [13]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    14. [14]

      Zhichao ZhouFuqian ChenXiaotong XiaDong YeRong ZhouLei LiTao DengZhenhua DingFang Liu . Developing a fluorescence substrate for HRP-based diagnostic assays with superiorities over the commercial ADHP. Chinese Chemical Letters, 2024, 35(6): 108970-. doi: 10.1016/j.cclet.2023.108970

    15. [15]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    16. [16]

      Yiling LiZekun GaoXiuxiu YueMinhuan LanXiuli ZhengBenhua WangShuang ZhaoXiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133

    17. [17]

      Peide ZhuYangjia LiuYaoyao TangSiqi ZhuXinyang LiuLei YinQuan LiuZhiqiang YuQuan XuDixian LuoJuncheng Wang . Bi-doped carbon quantum dots functionalized liposomes with fluorescence visualization imaging for tumor diagnosis and treatment. Chinese Chemical Letters, 2024, 35(4): 108689-. doi: 10.1016/j.cclet.2023.108689

    18. [18]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    19. [19]

      Zheng Zhao Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270

    20. [20]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

Metrics
  • PDF Downloads(0)
  • Abstract views(647)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return