Citation: JIN Suo, GU Qing-Yun, CHEN Jing, WANG Yang-Zhi, YUAN Guo-Zan. Crystal Structures and Photoluminescent Properties of Two Cd2+ Coordination Polymers Constructed from an 8-Hydroxyquinolinate Ligand[J]. Chinese Journal of Structural Chemistry, ;2016, 35(6): 929-938. doi: 10.14102/j.cnki.0254-5861.2011-0984 shu

Crystal Structures and Photoluminescent Properties of Two Cd2+ Coordination Polymers Constructed from an 8-Hydroxyquinolinate Ligand

  • Received Date: 24 September 2015
    Available Online: 2 December 2015

    Fund Project: This work was supported by the National Natural Science Foundation of China (No. 21201002) (No. 21201002) the Foundation of State Key Laboratory of Structural Chemistry (20130016) (20130016) Anhui Provincial Natural Science Foundation (1308085QB22) (1308085QB22)

  • In order to perform a study on the structural modulation in the Cd(II)-L architecture (HL = (E)-2-[2-(3-pyridyl)ethenyl]-8-hydroxyquinoline), two different dicarboxylic acids, namely, 2-aminoterephthalic acid (H2ATA) and 4,4'-biphenyldicarboxylic acid (H2BPDC), are employed as the secondary auxiliary ligands. Two new complexes [Cd2L2(ATA)] (1) and [Cd2L2(BPDC)·2MeOH· 4H2O] (2) with distinct 3D frameworks were obtained. In complex 1, ligands ATA bridge the 1D Cd(II)-L infinite chains into a 3D polymeric coordination network. Complex 2 is a 3D porous framework, in which adjacent 2D Cd(II)-L coordination layers were linked together by the coor- dinated BPDC ligands. The variant structures of two complexes indicate that the skeleton of dicarboxylate anions plays a great role in the assembly of such different frameworks. In addition, the photoluminescent properties (fluorescent emission, lifetime, and quantum yield) of polymers 1 and 2 were also investigated in the solid state.
  • 加载中
    1. [1]

      (1) Eliseeva, S. V.; Bünzli, J. C. G. Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 2010, 39, 189-227.

    2. [2]

      (2) Binnemans, K. Lanthanide-based luminescent hybrid materials. Chem. Rev. 2009, 109, 4283-4374.

    3. [3]

      (3) Hwang, S. H.; Moorefield, C. N.; Newkome, G. R. Dendritic macromolecules for organic light-emitting diodes. Chem. Soc. Rev. 2008, 37, 2543-2557.

    4. [4]

      (4) Carlos, L. D.; Ferreira, R. A. S.; de Zea Bermudez, V.; Julián-López, B.; Escribano, P. Progress on lanthanide-based organic-inorganic hybrid phosphors. Chem. Soc. Rev. 2011, 40, 536-549.

    5. [5]

      (5) Suh, M.; Cheon, Y.; Lee, E. Syntheses and functions of porous metallo supramolecular networks. Coord. Chem. Rev. 2008, 252, 1007-1026.

    6. [6]

      (6) Maspoch, D.; Ruiz-Molina, D.; Veciana, J. Old materials with new tricks: multifunctional open-framework materials. Chem. Soc. Rev. 2007, 36, 770-818.

    7. [7]

      (7) Rocha, J.; Carlos, L. D.; Paz, F. A. A.; Ananias, D. Luminescent multifunctional lanthanids based metal–organic frameworks. Chem. Soc. Rev. 2011, 40, 926-940.

    8. [8]

      (8) Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Luminescent metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1330-1352.

    9. [9]

      (9) Chen, B.; Xiang, S.; Qian, G. Metal-organic frameworks with functional pores for recognition of small molecules. Acc. Chem. Res. 2010, 43, 1115-1124.

    10. [10]

      (10) Shekhah, O.; Liu, J.; Fischerand, R. A.; Wöll, C. MOF thin films: existing and future applications. Chem. Soc. Rev. 2011, 40, 1081-1106.

    11. [11]

      (11) Yang, X.; Jones, R. A.; Huang, S. Luminescent 4f and d-4f polynuclear complexes and coordination polymers with flexible salen-type ligands. Coord. Chem. Rev. 2014, 273, 63-75.

    12. [12]

      (12) Cui, Y.; Chen, B.; Qian, G. Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications. Coord. Chem. Rev. 2014, 273, 76-86.

    13. [13]

      (13) Zhou, Y.; Li, X.; Zhang, L.; Guo, Y.; Shi, Z. 3-D silver(i)-lanthanide(iii) heterometallic organic frameworks constructed from 2,2'-bipyridine-3,3'-dicarboxylic acid: synthesis, structure, photoluminescence, and their remarkable thermostability. Inorg. Chem. 2014, 53, 3362-3370.

    14. [14]

      (14) Qin, J. S.; Bao, S. J.; Li, P.; Xie, W.; Du, D. Y.; Zhao, L.; Lan, Y. Q.; Su, Z. M. A. Stable porous anionic metal-organic framework for luminescence sensing of ln3+ ions action of nitrobenzene. Chem. Asian J. 2014, 9, 749-753.

    15. [15]

      (15) Wen, L.; Li, Y.; Lu, Z.; Lin, J.; Meng, C. D. Syntheses and structures of four d10 metal-organic frameworks assembled with aromatic polycarboxylate and bix (bix = 1,4-bis(imidazol-1-ylmethyl)benzene). Cryst. Growth Des. 2006, 6, 530-537.

    16. [16]

      (16) Bauer, C. A.; Timofeeva, T. V.; Settersten, T. B.; Patterson, B. D.; Liu, V. H.; Simmons, B. A.; Allendorf, M. D. Influence of connectivity and porosity on ligand-based luminescence in zinc metal-organic frameworks. J. Am. Chem. Soc. 2007, 129, 7136-7144.

    17. [17]

      (17) Wu, H. C.; Thanasekaran, P.; Tsai, C. H.; Wu, J. Y.; Huang, S. M.; Wen, Y. S.; Lu, K. L. Self-assembly, reorganization, and photophysical properties of silver(i)-Schiff-base molecular rectangle and polymeric array species. Inorg. Chem. 2006, 45, 295-303.

    18. [18]

      (18) Shustova, N. B.; Cozzolino, A. F.; Dinca, M. Conformational locking by design: relating strain energy with luminescence and stability in rigid metal–organic frameworks. J. Am. Chem. Soc. 2012, 134, 19596-19599.

    19. [19]

      (19) Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Luminescent functional metal-organic frameworks. Chem. Rev. 2012, 112, 1126-1162.

    20. [20]

      (20) Zhang, M. D.; Qin, L.; Yang, H. T.; Li, Y. Z.; Guo, Z. J.; Zheng, H. G. Series of metal-organic frameworks including novel architectural features based on a star-like tri(4-pyridylphenyl)amine ligand. Cryst. Growth Des. 2013, 13, 1961-1969.

    21. [21]

      (21) Tang, C. W.; VanSlyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 1987, 51, 913-915.

    22. [22]

      (22) Brinkmann, M.; Gadret, G.; Muccini, M.; Taliani, C.; Masciocchi, N.; Sironi, A. Correlation between molecular packing and optical properties indifferent crystalline polymorphs and amorphous thin films of mer-tris(8-hydroxyquinoline)aluminum(III). J. Am. Chem. Soc. 2000, 122, 5147-5157.

    23. [23]

      (23) Cöle, M.; Dinnebier, R. E.; Brütting, W. The structure of the blue luminescent δ-phase of tris(8-hydroxyquinoline)aluminium(III) (Alq3). Chem. Commun. 2002, 23, 2908-2909.

    24. [24]

      (24) Bi, H.; Zhang, H.; Zhang, Y.; Gao, H.; Su, Z.; Wang, Y. Fac-alq(3) and mer-alq(3) nano/microcrystals with different emission and charge-transporting properties. Adv. Mater. 2010, 22, 1631-1634.

    25. [25]

      (25) Kulkarni, A. P.; Tonzola, C. J.; Babel, A.; Jenekhe, S. A. Electron transport materials for organic light-emitting diodes. Chem. Mater. 2004, 16, 4556-4573.

    26. [26]

      (26) Pérez-Bolívar, C.; Takizawa, S.; Nishimura, G.; Montes, V. A.; Anzenbacher, P. High-efficiency tris(8-hydroxyquinoline)aluminum(III) (Alq3) complexes for organic white-light- emittigdiodes and solid-state lighting. Chem. Eur. J. 2011, 17, 9076-9082.

    27. [27]

      (27) Yuan, G. Z.; Shan, W. L.; Qiao, X. L.; M, L.; Huo, Y. P. Self-assembly of five 8-hydroxyquinolinate-based complexes: tunable core, supramolecular structure, and photoluminescence properties. Chem. Asian. J. 2014, 9, 1913-1921.

    28. [28]

      (28) Yuan, G.; Huo, Y.; Nie, X.; Fang, X.; Zhu, S. Structure and photophysical properties of adimeric Zn(II) complex based on 8-hydroxyquinoline group containing 2,6-dichlorobenzene unit. Tetrahedron 2012, 68, 8018-8023.

    29. [29]

      (29) Yuan, G.; Huo, Y.; Rong, L.; Nie, X.; Fang. X. Photoluminescences and 3D supramolecular structure with unique dimeric Zn(II) units featuring 2-substituted 8-hydroxyquinoline. Inorg. Chem. Commun. 2012, 23, 90-94.

    30. [30]

      (30) Yuan, G.; Huo, Y.; Nie, X.; Jiang, H.; Liu, B.; Fang, X.; Zhao. F. Controllable supramolecular structures and luminescent properties of unique trimeric Zn(II) 8-hydroxyquinolinates tuned by functional substituents. Dalton Trans. 2013, 42, 2921-2929.

    31. [31]

      (31) Sokołowski, K.; Justyniak, I.; Śliwiński, W.; Sołtys, K.; Tulewicz, A.; Kornowicz, A.; Moszyński, R.; Lipkowski, J.; Lewiński, J. Towards a new family of photoluminescent organozinc 8-hydroxyquinolinates with a high propensity to form noncovalent porous materials. Chem. Eur. J. 2012, 18, 5637-5645.

    32. [32]

      (32) Zhang, L.; Rong, L.; Hu, G.; Jin, S.; Jia, W.; Liu, J.; Yuan, G. Six Zn(II) and Cd(II) coordination polymers assembled from a similar binuclear building unit: tunable structures and luminescence properties. Dalton Trans. 2015, 44, 6731-6739.

    33. [33]

      (33) Zhang, M. D.; Qin, L.; Yang, H. T.; Li, Y. Z.; Guo, Z. J.; Zheng, H. G. Series of metal-organic frameworks including novel architectural features based on a star-like tri(4-pyridylphenyl)amine ligand. Cryst. Growth. Des. 2013, 13, 1961-1969.

    34. [34]

      (34) Zhou, X.; Fang, H.; Ge, Y.; Zhou, Z.; Gu, Z.; Gong, X.; Zhao, G.; Zhan, Q.; Zeng, R.; Cai, Y. Assembly of a series of trinuclear zinc(II) compounds with N2O2 donor tetradentat esymmetrical schiff base ligand. Cryst. Growth. Des. 2010, 10, 4014-4022.

    35. [35]

      (35) Perkovic, M. W. Allosteric manipulation of photoexcited state relaxation in (bpy)2ruii (binicotinicacid). Inorg. Chem. 2000, 39, 4962-4968.

    36. [36]

      (36) Huo, Y.; Zhu, S.; Hu, S. Synthesis and luminescent properties of Zn complex based on 8-hydroxyquinoline group containing 3,5-bis(trifluoromethyl)benzene unit with unique crystal structure. Tetrahedron 2010, 66, 8635-8640.

    37. [37]

      (37) Selmarten, D.; Jones, M.; Rumbles, G.; Yu, P.; Nedeljkovicand, J.; Shaheen, S. Quenching of seiconductor quantum dot photoluminescence by apiconjugated polymer. J. Phys. Chem. B 2005 , 9, 15927-15932.

    38. [38]

      (38) Li , Y. W.; Ma, H.; Chen, Y. Q.; He, K. H.; Li, Z. X; Bu, X. H. Structure modulation in Zn(II)-1,4-bis(imidazol-1-yl)benzene frameworks by varying dicarboxylate anions. Cryst. Growth Des. 2012, 12, 189-196.

  • 加载中
    1. [1]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    2. [2]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    3. [3]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    4. [4]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    5. [5]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    6. [6]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    7. [7]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    8. [8]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    9. [9]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    10. [10]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    11. [11]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    12. [12]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    13. [13]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    14. [14]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    15. [15]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    16. [16]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    17. [17]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    18. [18]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    19. [19]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    20. [20]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

Metrics
  • PDF Downloads(0)
  • Abstract views(663)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return