Citation: LI Wen-Bin, GAO Zhu-Qing, GU Jin-Zhong. Synthesis, Crystal Structure, and Magnetic Properties of a Co Metal-organic Framework with Mixed Dicarboxylate and Tricarboxylate Ligands[J]. Chinese Journal of Structural Chemistry, ;2016, 35(2): 257-263. doi: 10.14102/j.cnki.0254-5861.2011-0929 shu

Synthesis, Crystal Structure, and Magnetic Properties of a Co Metal-organic Framework with Mixed Dicarboxylate and Tricarboxylate Ligands

  • Corresponding author: GAO Zhu-Qing, 
  • Received Date: 5 August 2015
    Available Online: 12 October 2015

    Fund Project: This project was supported by the Natural Science Foundation of Shanxi Province (No. 2013011011-6) (No. 2013011011-6)

  • One new mixed-ligand coordination polymer, namely [Co2(btc)(bpdc)0.5(py)3]n (1), was hydrothermally synthesized using biphenyl-2,4,4'-tricarboxylic acid (H3btc) as a main building block, along with two auxiliary ligands (H2bpdc = 2,2'-bipyridine-5,5'-dicarboxylic acid and py = pyridine). The product 1 was characterized by IR spectroscopy, elemental, thermogravimetric, and single-crystal X-ray diffraction analyses. Single-crystal X-ray diffraction studies show that compound 1 possesses an intricate 3D metal-organic framework based on tetracobalt(II) units. Magnetic susceptibility measurement indicates that compound 1 shows an antiferromagnetic coupling between the Co(II) ions.
  • 加载中
    1. [1]

      (1) Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Metal-organic framework materials as chemical sensors. Chem. Rev. 2012, 112, 1105-1125.

    2. [2]

      (2) Anderson, J. S.; Gallagher, A. T.; Mason, J. A.; Harris, T. D. A five-coordinate heme dioxygen adduct isolated within a metal-organic framework. J. Am. Chem. Soc. 2014, 136, 16489-16492.

    3. [3]

      (3) Cowan, M. G.; Miller, R. G.; Southon, P. D.; Price, J. R.; Yazaydin, Q.; Lane, J. R.; Kepert, C. J.; Brooker, S. Selective gas adsorption in a pair of robust isostructural MOFs differing in framework charge and anion loading. Inorg. Chem. 2014, 53, 12076-12083.

    4. [4]

      (4) Stck, N.; Biawas, S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933-969.

    5. [5]

      (5) Cheon, Y. E.; Suh, M. P. Enhanced hydrogen storage by palladium nanoparticles fabricated in a redox-active metal-organic framework. Angew. Chem. Int. Ed. 2009, 48, 2899-2903.

    6. [6]

      (6) Chen, B.; Xiang, S.; Qian, G. Metal-organic frameworks with functional pores for recognition of small molecules. Acc. Chem. Res. 2010, 43, 1115 -1124.

    7. [7]

      (7) Dong, X. Y.; Hu, X. P.; Yao, H. C.; Zang, S. Q.; Hou, H. W.; Mak, T. C. Alkaline earth metal (Mg, Sr, Ba)-organic frameworks based on 2,2',6,6'-tetracarboxybiphenyl for proton conduction. Inorg. Chem. 2014, 53, 12050-12057.

    8. [8]

      (8) Karmakar, S.; Maity, D.; Mardanya, S.; Baitalik, S. Multichromophoric bimetallic Ru(II) terpyridine complexes based on pyrenyl-bis-phenylimidazole spacer: synthesis, photophysics, spectroelectrochemistry, and TD-DFT calculations. Inorg. Chem. 2014, 53, 12036-12049.

    9. [9]

      (9) Ordonez, C.; Fonari, M.; Lindline, J.; Wei, Q.; Timofeeva, T. How structure-directing cations tune the fluorescence of metal-organic frameworks. Cryst. Growth Des. 2014, 14, 5452-5465.

    10. [10]

      (10) Sun, J. K.; Chen, C.; Cai, L. X.; Ren, C. X.; Tan, B.; Zhang, J. Mechanical grinding of a single-crystalline metal-organic framework triggered emission with tunable violet-to-orange luminescence. Chem. Commun. 2014, 50, 15956-15959.

    11. [11]

      (11) Zhang, Q.; Yu, J. C.; Cai, J. F.; Song, R. J.; Cui, Y. J.; Yang, Y.; Chen, B. L.; Qian, G. D. A porous metal-organic framework with -COOH groups for highly efficient pollutant removal. Chem. Commun. 2014, 50, 14455-14459.

    12. [12]

      (12) Cui, L. T.; Niu, Y. F.; Han, J.; Zhao, X. L. Ancillary ligand-assisted assembly of C3-symmetric 4,4',4''-nitrilotribenzoic acid with divalent Zn2+ ions: syntheses, topological structures, and photoluminescence properties. J. Solid State Chem. 2015, 227, 155-164.

    13. [13]

      (13) Sen, S.; Neogi, S.; Rissanen, K.; Bharadwaj, P. K. Solvent induced single-crystal to single-crystal structural transformation and concomitant transmetalation in a 3D cationic Zn(II)-framework. Chem. Commun. 2015, 51, 3173-3176.

    14. [14]

      (14) Zhang, J.; Zheng, B.; Zhao, T.; Li, G.; Huo, Q.; Liu, Y. Topological diversities and luminescent properties of lanthanide metal-organic frameworks based on a tetracarboxylate ligand. Cryst. Growth Des. 2014, 14, 2394-2400.

    15. [15]

      (15) Zang, S. Q.; Dong, M. M.; Fan, Y. T.; Hou, H. W.; Mak, T. C. T. Four cobaltic coordination polymers based on 5-iodo-isophthalic acid: halogen-related interaction and solvent effect. Cryst. Growth Des. 2012, 12, 1239-1246.

    16. [16]

      (16) Mu, Y.; Xie, J.; Ran, Y.; Han, B.; Qin, G. F. A series of entangled Cd(II) coordination polymers assembled from different dicarboxylate acids and a flexible imidazole-based ligand. Polyhedron 2015, 89, 20-28.

    17. [17]

      (17) Gu, J. Z.; Kirillov, A. M.; Wu, J.; Lv, D. Y.; Tang, Y.; Wu, J. C. Synthesis, structural versatility, luminescent and magnetic properties of a series of coordination polymers constructed from biphenyl-2,4,4'-tricarboxylate and different N-donor ligands. CrystEngComm. 2013, 15, 10287-10303.

    18. [18]

      (18) Gu, J. Z.; Gao, Z. Q.; Tang, Y. pH and auxiliary ligand influence on the structural variations of 5(2'-carboxylphenyl) nicotate coordination polymers. Cryst. Growth Des. 2012, 12, 3312-3323.

    19. [19]

      (19) Gao, Z. Q.; Li, H. J.; Alexander, M. K.; Gu, J. Z. Syntheses, crystal structures and luminescent properties of lead(II) and cadmium(II) coordination polymers constructed from biphenyl-2,5,3'-tricarboxylate. Chin. J. Struct. Chem. 2014, 33, 888-896.

    20. [20]

      (20) Tian, D.; Pang, Y.; Zhou, Y. H.; Guan, L.; Zhang, H. A series of complexes based on biphenyl-2,5,2',5'-tetracarboxylic acid: syntheses, crystal structures, luminescent and magnetic properties. CrystEngComm. 2011, 13, 957-966.

    21. [21]

      (21) Wen, L. L.; Wang, F.; Leng, X. K.; Wang, C. G.; Wang, L. Y.; Gong, J. M.; Li, D. F. Efficient detection of organophosphate pesticide based on a metal-organic framework derived from biphenyltetracarboxylic acid. Cryst. Growth Des. 2010, 10, 2835-2838.

    22. [22]

      (22) Saines, P. J.; Barton, P. T.; Jain, P.; Cheetham, A. K. Structures and magnetic properties of Mn and Co inorganic-organic frameworks with mixed linear dicarboxylate ligands. CrystEngComm. 2012, 14, 2711-2720.

    23. [23]

      (23) Wu, G. Y.; Ren, Y. X.; Yin, Z.; Sun, F.; Zeng, M. H.; Kurmoo, M. Effects of substituent groups on the structures and luminescence properties of 2D/3D Cd(II) complexes with mixed rigid and flexible carboxylate ligands. RSC Adv. 2014, 4, 24183-24188.

    24. [24]

      (24) Sheldrick, G. M. SHELXS 97, Program for Solution of Crystal Structure. University of Göttingen, Germany 1997.

    25. [25]

      (25) Sheldrick, G. M. SHELXL 97, Program for Refinement of Crystal Structure. University of Göttingen, Germany 1997.

    26. [26]

      (26) Zhao, Y.; He, L. L.; Xu, H.; Li, X. Y.; Zang, S. Q. Two metal-organic coordination polymers assembled from a flexible iodo-dicarboxylate ligand and N-donor ancillary ligands. Inorg. Chim. Acta 2013, 404, 201-205.

    27. [27]

      (27) Jing, X. H.; Yi, X. C.; Gao, E. Q.; Blatov, V. A. Synthesis, structure, topology and magnetic properties of cobalt(II) coordination polymers with 2-nitrobiphenyl-4,4'-dicarboxylic acid and bis(pyridyl) ligands. Dalton Trans. 2012, 41, 14316-14328.

    28. [28]

      (28) Zhang, Q. F.; Zhang, H. N.; Zeng, S. Y.; Sun, D. Z.; Zhang, C. A chain-based 2D cobalt(II) coordination polymer with a “crab-like” flexible dicarboxylate ligand: a weak ferromagnetic single-chain magnet. Chem. Asian J. 2013, 8, 1985-1989.

  • 加载中
    1. [1]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    2. [2]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    3. [3]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    4. [4]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    5. [5]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    6. [6]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    7. [7]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    8. [8]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    9. [9]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    10. [10]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    14. [14]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    15. [15]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

    16. [16]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    17. [17]

      Benjian Xin Rui Wang Lili Liu Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116

    18. [18]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    19. [19]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    20. [20]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

Metrics
  • PDF Downloads(1)
  • Abstract views(1945)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return