Citation: GUO Wang, SHI Hong-Ling, HUANG Ji-Quan, DENG Zhong-Hua, YUAN Xuan-Yi, CAO Yong-Ge. Spectral Property and Thermal Quenching Behavior of Tb3+-Doped YAG: Ce Phosphor[J]. Chinese Journal of Structural Chemistry, ;2016, 35(2): 326-334. doi: 10.14102/j.cnki.0254-5861.2011-0871 shu

Spectral Property and Thermal Quenching Behavior of Tb3+-Doped YAG: Ce Phosphor

  • Received Date: 29 June 2015
    Available Online: 13 August 2015

    Fund Project: This work was supported by the National Natural Science Foundation of China (51272282, 51302311) (51272282, 51302311)the Education Commission of Beijing (2011010329) (Z13111000280000)

  • A series of YAG:Ce, Tb phosphors were synthesized by vacuum sintering method. Moreover, their spectral properties, thermal quenching behaviors and color rendering properties were investigated systematically. The photoluminescence emission spectra of YAG:Ce, Tb show a great red shift compared with that of YAG:Ce. Direct energy transfer from Tb3+ to Ce3+ ions is verified based on the analysis of different photoluminescence spectra. The quenching temperature for Tb3+-doped YAG:Ce phosphors is about 490 K. The thermal activation energy is estimated to be 0.18 and 0.291 eV for Tb3+-doped YAG:Ce and YAG:Ce phosphors, respectively. The smaller activation energy for Tb3+-doped YAG:Ce means a more rapid nonradiative transition from 5d to 4f state, thus resulting in the lower quenching temperature. In addition, white LEDs with improved color rendering properties are achieved by using modified YAG:Ce, Tb phosphors.
  • 加载中
    1. [1]

      (1) Blasse, G.; Grabmaier, B. C. Luminescent Materials. Springer, Berlin 1994.

    2. [2]

      (2) Gan, L.; Mao, Z. Y.; Xu, F. F.; Zhu, Y. C.; Liu, X. J. Molten salt synthesis of YAG:Ce3+ phosphors from oxide raw materials. Ceram. Int. 2014, 40, 5067-5071.

    3. [3]

      (3) Nakamua, S.; Fasol, G. The blue Laser Diode. Springer, Berlin 1996.

    4. [4]

      (4) Schubert, E. F.; Kim, J. K. Solid-state light sources getting smart. Science 2005, 308, 1274-1278.

    5. [5]

      (5) You, F. T.; Bos, A. J. J.; Shi, Q. F.; Huang, S. H.; Dorenbos, P. Phys. Rev. B. Thermoluminescence investigation of donor (Ce3+, Pr3+, Tb3+) acceptor (Eu3+, Yb3+) pairs in Y3Al5O12. 2012, 85, 115101-1-6.

    6. [6]

      (6) Pan, Y. X.; Wu, M. M.; Su, Q. Tailored photoluminescence of YAG:Ce phosphor through various methods. J. Phys. Chem. Solids 2004, 65, 845-850.

    7. [7]

      (7) Jang, H. S.; Im, W. B.; Lee, D. C.; Jeon, D. Y.; Kim, S. S. Enhancement of red spectral emission intensity of Y3Al5O12:Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs. J. Lumin. 2007, 126, 371-377.

    8. [8]

      (8) Mukherjee, S.; Sudarsan, V.; Vatsa, R. K.; Tyagi, A. K. Luminescence studies on lanthanide ions (Eu3+, Dy3+ and Tb3+) doped YAG:Ce nano-phosphors. J. Lumin. 2009, 129, 69-72.

    9. [9]

      (9) Jung, K. Y.; Lee, H. W. Enhanced luminescent properties of Y3Al5O12:Tb3+,Ce3+ phosphor prepared by spray pyrolysis. J. Lumin. 2007, 126, 469-474.

    10. [10]

      (10) Blasse, G.; Bril, A. Investigation of some Ce3+-activated phosphors. J. Chem. Phys. 1967, 47, 5139-5145.

    11. [11]

      (11) Jacobs, R. R.; Krupke, W. F.; Weber, M. J. Measurement of excited-state­­­-absorption loss for Ce3+ in Y3Al5O12 and implications for tunable 5d → 4f rare-earth lasers. Appl. Phys. Lett. 1978, 33, 410-412.

    12. [12]

      (12) Rack, P. D.; Holloway, P. H. The structure, device physics, and material properties of thin film electroluminescent displays. Mater. Sci. Eng. R 1998, 171-219.

    13. [13]

      (13) Rodręguez-Rojas, R. A.; De la Rosa Cruz, E.; Dıaz-Torres, L. A.; Salas, P.; Melendrez, R.; barboza-Flores, M.; Meneses Nava, M. A.; Barbosa-Garcıa, O. Preparation, photo- and thermo-luminescence characterization of Tb3+ and Ce3+ doped nanocrystalline Y3Al5O12 exposed to UV-irradiation. Opt. Mater. 2004, 25, 285-293.

    14. [14]

      (14) Zhou, Y. H.; Lin, J.; Yu, M.; Wang, S. B.; Zhang, H. J. Synthesis-dependent luminescence properties of Y3Al5O12:Re3+ (Re = Ce, Sm, Tb) phosphors. Mater. Lett. 2002, 56, 628-636.

    15. [15]

      (15) Lin, Y. S.; Liu, R. S.; Cheng, B. M. Investigation of the luminescent properties of Tb3 + -substituted YAG:Ce, Gd phosphors general topics. J. Electrochem. Soc. 2005, 152, 41-45.

    16. [16]

      (16) Yang, H. S.; Kim, Y. S. Energy transfer-based spectral properties of Tb-, Pr-, or Sm-codoped YAG:Ce nanocrystalline phosphors. J. Lumin. 2008, 128, 1570-1576.

    17. [17]

      (17) Shmulovich, J.; Berkstresser, G. W.; Brasen, D. Tb3+ → Ce3+ energy transfer in Tb3+:Ce3+:YAG single crystalsa. J. Chem. Phys. 1985, 82, 3078-3082.

    18. [18]

      (18) Liu, X. R.; Wang, X. J.; Wang, Z. K. Selectively excited emission and Tb3+ → Ce3+ energy transfer in yttrium aluminum garnet. Phys. Rev. B 1989, 39, 10633-10639.

    19. [19]

      (19) Wong, C. M.; Rotman, S. R.; Warde, C. Optical studies of cerium doped yttrium aluminum garnet single crystals. Appl. Phys. Lett. 1984, 44, 1038-1040.

    20. [20]

      (20) Kelledouk, F.; Belt, T.; van den. Blasse, G. On the luminescence of bismuth, cerium, and chromium and yttrium aluminium borate. J. Chem. Phys. 1982, 76, 1194-1201.

    21. [21]

      (21) Jia, D.; Meltzer, R. S.; Yen, W. M.; Jia, W.; Wang, X. Green phosphorescence of CaAl2O4: Tb3+, Ce3+ through persistence energy transfer. Appl. Phys. Lett. 2002, 90, 1535-1537.

    22. [22]

      (22) You, H.; Hong, G.; Wu, X. A new type of highly efficient luminescent materials the system Al2O3-B2O3 containing Ce3+ and Tb3+ ions. Chem. Mater. 2003, 15, 2000-2004.

    23. [23]

      (23) Riwotzki, K.; Meyssamy, H.; Schnablegger, H.; Kornowski, A.; Haase, M. Liquid-phase synthesis of colloids and redispersible powders of strongly luminescing LaPO4:Ce,Tb nanocrystals. Angew. Chem. Int. Ed. 2001, 40, 573-576.

    24. [24]

      (24) Zhu, X. J.; Zhou, K. N.; Li, Y. M.; Wang, Z. L.; Feng, Q. C. Luminescent properties and energy transfer of Y3Al5O12:Ce3+, Ln3+ (Ln = Tb, Pr) prepared by polymer-assisted sol-gel method. J. Lumin. 2012, 132, 3004-3009.

    25. [25]

      (25) Bachmann, V.; Ronda, C.; Meijerink, A. Temperature quenching of yellow Ce3+ luminescence in YAG:Ce. Chem. Mater. 2009, 21, 2077-2084.

    26. [26]

      (26) Bhushan, S.; Chukichev, M. V. Temperature dependent studies of cathodoluminescence of green band of ZnO crystals. J. Mater. Sci. Lett. 1988, 7, 319-321.

    27. [27]

      (27) Chen, Y.; Liu, B.; Shi, C.; Ren, G.; Zimmerer, G. The temperature effect of Lu2SiO5:Ce3+ luminescence. Nucl. Instrum. Meth. Phys. Res. A 2005, 537, 31-35.

    28. [28]

      (28) Chiang, C. C.; Tsai, M. S.; Hon, M. H. Luminescent properties of cerium-activated garnet series phosphor: structure and temperature effects. J. Electrochem. Soc. 2008, 155, B517-B520.

    29. [29]

      (29) Ueda, J.; Tanabe, S.; Nakanishi, T. Analysis of Ce3+ luminescence quenching in solid solutions between Y3Al5O12 and Y3Ga5O12 by temperature dependence of photoconductivity measurement. J. Appl. Phys. 2011, 110, 053102-1-6.

    30. [30]

      (30) Raukas, M.; Basun, S. A.; Schaik, W. V.; Yen, W.; Happek, M. U. Luminescence efficiency of cerium doped insulators: The role of electron transfer processes. Appl. Phys. Lett. 1996, 69, 3300-3302.

    31. [31]

      (31) Hamilton, D. S.; Gayen, S. K.; Pogatshnik, G. J.; Ghen, R. D.; Miniscalco, W. J. Optical-absorption and photoionization measurements from the excited states of Ce3+:Y3Al5O12. Phys. Rev. B 1989, 39, 8807-8815.

    32. [32]

      (32) Ivanovskikh, K. V.; Ogieglo, J. M.; Zych, A.; Ronda, C. R.; Meijerink, A. J. Solid. State. Sci. Technol. 2013, 2, R3148-R3152.

    33. [33]

      (33) Fang, Y. C.; Chu, S. Y.; Kao, P. C.; Chuang, Y. M.; Zeng, Z. L. Energy transfer and thermal quenching behaviors of CaLa2 (MoO4)4: Sm3 + , Eu3 + red phosphors. J. Electrochem. Soc. 2011, 158, J1-J5.

    34. [34]

      (34) Han, T.; Cao, S.; Peng, L.; Zhu, D.; Zhao, C.; Tu, M.; Zhang, J. Chemical substitution effects of elements on photoluminescence properties of YAG:Ce phosphors using orthogonal experimental design. Opt. Mater. 2012, 34, 1618-1621.

    35. [35]

      (35) Yadav, P. J.; Joshi, C. P.; Moharil, S. V. Two phosphor converted white LED with improved CRI. J. Lumin. 2013, 136, 1-4.

    36. [36]

      (36) Chung, W.; Yu, H. J.; Park, S. H.; Chun, B. H.; Kim, S. H. YAG and CdSe/ZnSe nanoparticles hybrid phosphor for white LED with high color rendering index. Mater. Chem. Phys. 2011, 126, 162-166.

  • 加载中
    1. [1]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    2. [2]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    3. [3]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    4. [4]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    5. [5]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    6. [6]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

    7. [7]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    8. [8]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    9. [9]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    10. [10]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    11. [11]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    12. [12]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    13. [13]

      Rongliang DengYihang ChenXiaotong FanGuolong ChenShuli WangChangzhi YuXiao YangTingzhu WuZhong ChenYue Lin . Break of thermal equilibrium between optical and acoustic phonon branches of CsPbI3 under continuous-wave light excitation and cryogenic temperature. Chinese Chemical Letters, 2024, 35(7): 109346-. doi: 10.1016/j.cclet.2023.109346

    14. [14]

      Xiangan SongShaogang ShenMengyao LuYing WangYong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118

    15. [15]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    16. [16]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

    17. [17]

      Hui LiuXiangyang TangZhuang ChengYin HuYan YanYangze XuZihan SuFutong LiuPing Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809

    18. [18]

      Hong Chen Mao-Yin Ran Long-Hua Li Xin-Tao Wu Hua Lin . [Cs14Cl][Tm71Se110]: An unusual salt-inclusion chalcogenide containing different valent Tm centers and ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100397-100397. doi: 10.1016/j.cjsc.2024.100397

    19. [19]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    20. [20]

      Yanbing ShenYuan YuanYaxin WangXiaonan MaWensheng YangYulan Chen . Dihydroanthracene bridged bis-naphthopyrans: A multimodal chromophore with mechano- and photo-chromic properties. Chinese Chemical Letters, 2024, 35(5): 108949-. doi: 10.1016/j.cclet.2023.108949

Metrics
  • PDF Downloads(0)
  • Abstract views(716)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return