Citation: ZHANG Cong-Cong, ZHU Ling, FAN Cong-Bin, PU Shou-Zhi. Crystal Structure and Photoreactive Properties of 1-(2,5-Dimethyl-3-thienyl)-2-[2-methyl-5-(N-(quinolin-8-yl)-2-carboxamide)-3-thienyl)]perfluorocyclopentene[J]. Chinese Journal of Structural Chemistry, ;2016, 35(3): 413-420. doi: 10.14102/j.cnki.0254-5861.2011-0856 shu

Crystal Structure and Photoreactive Properties of 1-(2,5-Dimethyl-3-thienyl)-2-[2-methyl-5-(N-(quinolin-8-yl)-2-carboxamide)-3-thienyl)]perfluorocyclopentene

  • Received Date: 7 June 2015
    Available Online: 13 August 2015

    Fund Project: Supported by the National Natural Science Foundation of China (51373072, 21363009) (51373072, 21363009) the Project of Natural Science Foundation of Jiangxi Province (20142BAB203005) (20142BAB203005) the Project of Science Funds of Jiangxi Education Office (KJLD12035) (KJLD12035) the Young scientisttraining program of Jiangxi (20153BCB23008) (20153BCB23008)

  • The photochromic title compound, C26H18F6N2OS2, contains a 2, 5-dimethylthio-phene ring and a N-formyl aminoquinolinyl thiophene ring on the C=C double bond of the cyclopentene ring. The dihedral angles between the cyclopentene and attached N-formyl aminoquinolinyl thiophene ring and 2, 5-dimethylthiophene ring are 63.0° and 137.1°, respectively. The dihedral angle between the thiophene ring and the adjacent aminoquinoline ring is 5.7°. The molecule adopts an antiparallel conformation, with a distance between the two photoreactive C atoms of 3.763 Å. In addition, the absorption and fluorescence spectral changes were measured in acetonitile and solid at room temperature, and the result showed that the title compound could undergo photochromic reaction in both states.
  • 加载中
    1. [1]

      (1) Irie, M. Diarylethenes for memories and switches. Chem. Rev. 2000, 100, 1685-1716.

    2. [2]

      (2) Fan, C. B.; Cui, S. Q.; Liu, G. Synthesis and crystal structure of 1-(2-methyl-5-formyl-3-thienyl)-2-(2-methoxylphenyl) perfluorocyclopentene. Chin. J. Struct. Chem. 2013, 32, 51-56.

    3. [3]

      (3) Tsujioka, T.; Matsui, N. Electrical characterization of photochromic diarylethene films consisting of extraordinarily large crystallites. J. Mater. Chem. C 2014, 2, 3589-3596.

    4. [4]

      (4) Jin, H. Y.; Tian, J. H.; Wang, S. R.; Tan, T. F.; Xiao, Y.; Li, X. G. Novel photochromic and electrochromic diarylethenes bearing triphenylamine units. RSC Adv. 2014, 4, 16839-16848.

    5. [5]

      (5) Irie, M.; Fukaminato, T.; Matsuda, K.; Kobatake, S. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem. Rev. 2014, 114, 12174-12277.

    6. [6]

      (6) Pu, S. Z.; Ma, L. L.; Liu, G.; Ding, H. C.; Chen, B. A multiple switching diarylethene with a phenyl-linked rhodamine B unit and its application as chemosensor for Cu2+. Dyes Pigm. 2015, 113, 70-77.

    7. [7]

      (7) Göstl, R.; Senf, A.; Hecht, S. Remote-controlling chemical reactions by light: towards chemistry with high spatio-temporal resolution. Chem. Soc. Rev. 2014, 43, 1982-1996.

    8. [8]

      (8) Tian, H.; Yang, S. J. Recent progresses on diarylethene based photochromic switches. Chem. Soc. Rev. 2004, 33, 85-97.

    9. [9]

      (9) Luo, Q. F.; Fan, Q. L.; Huang, W. A survey on the synthesis of photochromic material diarylethenes. Chin. J. Org. Chem. 2007, 27, 175-187.

    10. [10]

      (10) Genre, C.; Matouzenko, G. S.; Jeanneau, E.; Luneau, D. A spin-crossover iron(II) coordination polymer with the 8-aminoquinoline ligand: synthesis, crystal structure and magnetic properties of [Fe(aqin)2(4, 4'-bpy)](ClO4)2·2EtOH (aqin = 8-aminoquinoline, 4, 4'-bpy = 4, 4'-bipyridyl). New J. Chem. 2006, 30, 1669-1674.

    11. [11]

      (11) Schmidbaur, H.; Kolb, A.; Bissinger, P. Synthesis and structure of trinuclear and novel tetranuclear gold(I) complexes derived from 8-aminoquinoline. Inorg. Chem. 1992, 31, 4370-4375.

    12. [12]

      (12) Zhang, Y.; Guo, X. F.; Si, W. X.; Jia, L. H.; Qian, X. H. Ratiometric and water-soluble fluorescent zinc sensor of carboxamidoquinoline with an alkoxyethylamino chain as receptor. Org. Lett. 2008, 10, 473-476.

    13. [13]

      (13) Huang, J. H.; Xua, Y. F.; Qian, X. H. Rhodamine-based fluorescent off-on sensor for Fe3+ in aqueous solution and in living cells: 8-aminoquinoline receptor and 2:1 binding. Dalton Trans. 2014, 43, 5983-5989.

    14. [14]

      (14) Sherwood, J. A.; Gachihi, G. S.; Muigai, R. K.; Skillman, D. R.; Mugo, M.; Rashid, J. R.; Schuster, B. G. Phase 2 efficacy trial of an oral 8-aminoquinoline (WR6026) for treatment of visceral leishmaniasis. Clin. Infect. Dis. 1994, 19, 1034-1039.

    15. [15]

      (15) Irvine, G. J.; Rickard, C. E.; Roper, W. R.; Williamson, A.; Wright, L. J. A base-stabilized terminal borylene complex of osmium derived from reaction between a dichloroboryl complex and 8-aminoquinoline. Angew. Chem. Int. Ed. 2000, 39, 948-950.

    16. [16]

      (16) Zhu, J. F.; Yuan, H.; Chan, W. H.; Lee, A. W. A fret fluorescent chemosensor spaq for Zn2+ based on a dyad bearing spiropyran and 8-aminoquinoline unit. Tetrahedron Lett. 2010, 51, 3550-3554.

    17. [17]

      (17) Tang, B.; Yue, T. X.; Wu, J. S.; Dong, Y. M.; Ding, Y.; Wang, H. J. Rapid and sensitive spectrofluorimetric determination of trace amount of Cr(III) with o-vanillin-8-aminoquinoline. Talanta 2004, 64, 955-960.

    18. [18]

      (18) Pu, S. Z.; Luo, F. S.; Wang, R. J.; Yang, T. S. 1-(2, 5-Dimethyl-3-thienyl)-3, 3, 4, 4, 5, 5-hexafluoro-2-(5-formyl-2-methyl-3-thienyl) cyclopent-1-ene: a new photochromic diarylethene compound. Acta Crystallogr. E 2006, 62, 1194-1196.

    19. [19]

      (19) Sevez, G.; Pozzo, J. L. Toward multi-addressable molecular systems: efficient synthesis and photochromic performance of unsymmetrical bisthienylethenes. Dyes Pigm. 2011, 89, 246-253.

    20. [20]

      (20) Woodward, R. B.; Hoffmann, R. The conservation of orbital symmetry. Angew. Chem., Int. Ed. Engl. 1969, 8, 781-853.

    21. [21]

      (21) Jia, H. J.; Fan, C. B.; Pu, S. Z. Crystal structure and photochromic properties of [1-(2-methyl-5-(4-cyanophenyl)-3-thienyl)-2-(2-methyl-5-phenyl- 3-thienyl)perfluorocyclopentene. Chin. J. Struct. Chem. 2015, 34, 208-214.

    22. [22]

      (22) Ramamurthy, V.; Venkatesan, K. Photochemical reactions of organic crystals. Chem. Rev. 1987, 87, 433-481.

    23. [23]

      (23) Yang, T. S.; Liu, Q.; Li, J. C.; Pu, S. Z.; Yang, P. Y.; Li, F. Y. Photoswitchable upconversion nanophosphors for small animal imaging in vivo. RSC Adv. 2014, 4, 15613-15619.

    24. [24]

      (24) Fan, C. B.; Pu, S. Z.; Liu, G. Effects of solvents on the growth of an asymmetrical photochromic diarylethene crystal. Dyes Pigm. 2015, 113, 61-69.

    25. [25]

      (25) Irie, M. Photochromism of diarylethene single molecules and single crystals. Photochem. Photobiol. Sci. 2010, 9, 1535-1542.

    26. [26]

      (26) Tian, H.; Qin, B.; Yao, R. X.; Zhao, X. L.; Yang, S. J. A single photochromic molecular switch with four optical outputs probing four inputs. Adv. Mater. 2003, 15, 2104-2107.

    27. [27]

      (27) Fukaminato, T.; Sasaki, T.; Kawai, T.; Tamai, N.; Irie, M. Digital photoswitching of fluorescence based on the photochromism of diarylethene derivatives at a single-molecule level. J. Am. Chem. Soc. 2004, 126, 14843-14849.

    28. [28]

      (28) Tian, H.; Feng, Y. L. Next step of photochromic switches. J. Mater. Chem. 2008, 18, 1617-1622.

    29. [29]

      (29) Sevez, G.; Gan, J.; Delbaere, S.; Vermeersch, G.; Sanguinet, L.; Levillain, E.; Pozzo, J. L. Photochromic performance of a dithienylethene-indolinooxazolidine hybrid. Photochem. Photobiol. Sci. 2010, 9, 131-135.

    30. [30]

      (30) Tsivgoulis, G. M.; Lehn, J. M. Photoswitched and functionalized oligothiophenes: synthesis and photochemical and electrochemical properties. Chem. Eur. J. 1996, 2, 1399-1406.

  • 加载中
    1. [1]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    2. [2]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    3. [3]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    4. [4]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    5. [5]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    6. [6]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    7. [7]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    8. [8]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

    9. [9]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    10. [10]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

    11. [11]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    12. [12]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    13. [13]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    14. [14]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    15. [15]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    16. [16]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    17. [17]

      Yukai TongZhijun WuBo ZhouMin HuAnpei Ye . Surface tension of single suspended aerosol microdroplets. Chinese Chemical Letters, 2024, 35(4): 109062-. doi: 10.1016/j.cclet.2023.109062

    18. [18]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    19. [19]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    20. [20]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

Metrics
  • PDF Downloads(0)
  • Abstract views(861)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return