Citation: He-Ming JI, Ming-Guang XU, Hai-Yan ZHANG, Xiao-Long LI, Yan-Nan QIAN. Enhanced Upconversion Emissions of TiO2: Yb3+/Tm3+ Nanocrystals: Comparison with Different Effects of Li+, Mn2+ and Cu2+ Ions[J]. Chinese Journal of Structural Chemistry, ;2021, 40(10): 1379-1384. doi: 10.14102/j.cnki.0254–5861.2011–3185 shu

Enhanced Upconversion Emissions of TiO2: Yb3+/Tm3+ Nanocrystals: Comparison with Different Effects of Li+, Mn2+ and Cu2+ Ions

  • Corresponding author: Xiao-Long LI, qianyannanhit@126.com Yan-Nan QIAN, 2015028@ynau.edu.cn
  • Received Date: 18 March 2021
    Accepted Date: 14 April 2021

    Fund Project: Guangdong Natural Science Funds for Distinguished Young Scholar 2015A030306041Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program 2015TQ01N060Major Foundation of Guangzhou Science and Technology 201804020005

Figures(4)

  • Codoping with Mn+ ions (Mn+ = Li+, Mn2+ and Cu2+) enhanced the blue and red upconversion (UC) emissions in TiO2: Yb3+/Tm3+ nanocrystals under 980 nm excitation. The different effects of Li+, Mn2+ and Cu2+ ions on the phase structures, morphologies and optical characteristics of TiO2: Yb3+/Tm3+ were discussed. The minor shifting in the diffraction peaks at 25.2° was observed for TiO2: Yb3+/Tm3+/Li+, and adding Mn2+ ions remained almost the same position of diffraction peaks, while the introduction of Cu2+ ions resulted in the shift of the diffraction peaks towards the larger angles. TiO2: Yb3+/Tm3+/Li+ and TiO2: Yb3+/Tm3+/Mn2+ nanosheets and the sphere-like TiO2: Yb3+/Tm3+/Cu2+ were observed. The mechanisms for increased UC emissions caused by adding Li+, Mn2+ and Cu2+ ions were attributed to the tailored local environment around Tm3+ ions, efficient energy transition between Mn2+-Yb3+ dimer and Tm3+ ions, and the localized surface plasmon resonance (LSPR) of Cu2+ ions, respectively.
  • 加载中
    1. [1]

      Tang, Y. N.; Di, W. H.; Zhai, X. S.; Yang, R. Y.; Qin, W. P. NIR-responsive photocatalytic activity and mechanism of NaYF4: Yb, Tm@TiO2 core-shell nanoparticles. ACS Catal. 2013, 3, 405–412.  doi: 10.1021/cs300808r

    2. [2]

      Ende, B. M. V. D.; Aarts, L.; Meijerink, A. Lanthanide ions as spectral converters for solar cells. Phys. Chem. Chem. Phys. 2009, 11, 11081–11095.  doi: 10.1039/b913877c

    3. [3]

      Roh, J.; Yu, H. J.; Jang, J. Hexagonal β-NaYF4: Yb3+, Er3+ nanoprism-incorporated upconverting layer in perovskite solar cells for near-infrared sunlight harvesting. ACS Appl. Mater. Interfaces 2016, 8, 19847–19852.  doi: 10.1021/acsami.6b04760

    4. [4]

      Lee, C.; Aikens, C. M. Effects of Mn doping on (TiO2)n (n = 2~5) complexes. Comput. Theor. Chem. 2013, 1013, 32–45.  doi: 10.1016/j.comptc.2013.03.001

    5. [5]

      Jung, K. Y. Aerosol synthesis of TiO2: Er3+/Yb3+ submicronsized spherical particles and upconversion optimization for application as anti-counterfeiting materials. RSC Adv. 2020, 10, 16323–16329.  doi: 10.1039/D0RA01549K

    6. [6]

      Shaier, H.; Salah, A.; Mousa, W. M.; Hamed, S. S.; Battisha, I. K. Physical properties and up-conversion development of Ho3+ ions loaded in nano-composite silica titania thin film. Mater. Res. Express. 2020, 7, 096403(1)–096403(9).

    7. [7]

      Fu, K.; Huang, J. Z.; Yao, N. N.; Xu, X. J.; Wei, M. Z. Enhanced photocatalytic activity of TiO2 nanorod arrays decorated with CdSe using an upconversion TiO2: Yb3+, Er3+ thin film. Ind. Eng. Chem. Res. 2015, 54, 659–665.  doi: 10.1021/ie504204z

    8. [8]

      Trabelsi, F.; Mercier, F.; Blanquet, E.; Crisci, A.; Salhi, R. Synthesis of upconversion TiO2: Er3+-Yb3+ nanoparticles and deposition of thin films by spin coating technique. Ceram. Int. 2020, 46, 28183–28192.  doi: 10.1016/j.ceramint.2020.07.317

    9. [9]

      Qu, P.; Wang, K. F.; Li, J.; Wang, S. Z.; Wei, W. Upconverting TiO2 spheres with light scattering effect for enhanced quantum dot-sensitized solar cells. Mater. Res. Express. 2020, 10, 556–562.  doi: 10.1166/mex.2020.1672

    10. [10]

      Asadi, M.; Ghahari, M.; Tabrizi, S. A. H.; Arabi, A. M.; Nasiri, R. Studying the toxicity effects of coated and uncoated NaLuF4: Yb3+, Tm3+ upconversion nanoparticles on blood factors and histopathology for Balb/C mice's tissue. Mater. Res. Express. 2019, 6, 125421(1)–125421(15).

    11. [11]

      Fu, H. H.; Liu, Y. S.; Jiang, F. L.; Hong, M. C. Controlled synthesis and optical properties of lanthanide-doped Na3ZrF7 nanocrystals. Chin. J. Struct. Chem. 2018, 37, 1737–1748.

    12. [12]

      Huang, W. J.; Lu, C. H.; Jiang, C. F.; Wang, W.; Song, J. B.; Ni, Y.; Xu, Z. Z. Controlled synthesis of NaYF4 nanoparticles and upconversion properties of NaYF4: Yb, Er (Tm)/FC transparent nanocomposite thin films. J. Colloid Int. Sci. 2012, 376, 34–39.  doi: 10.1016/j.jcis.2012.02.047

    13. [13]

      Joshi, R.; Perala, R. S.; Shelar, S. B.; Ballal, A.; Singh, B. P.; Ningthoujam, R. S. Super bright red upconversion in NaErF4: 0.5%Tm@NaYF4: 20%Yb nanoparticles for anti-counterfeit and bioimaging applications. ACS Appl. Mater. Interfaces 2021, 13, 3481–3490.  doi: 10.1021/acsami.0c21099

    14. [14]

      Qiu, J. B.; Jiao, Q.; Zhou, D. C.; Yang, Z. W. Recent progress on upconversion luminescence enhancement in rare-earth doped transparent glass-ceramics. J. Rare Earths 2016, 34, 341–367.  doi: 10.1016/S1002-0721(16)60034-0

    15. [15]

      Chai, Z. Z.; Yang, Z. W.; Qiu, J. B.; Zhu, J. L.; Song, Z. G. Embedding Ag or Au nanoparticles within the nano-sized wall of YbPO4: Er3+ inverse opals and resulting enhanced upconversion luminescence. Ceram. Int. 2018, 44, 13757–13764.  doi: 10.1016/j.ceramint.2018.04.218

    16. [16]

      Huang, Q. M. Structure and upconversion luminescence investigation of cubic Y3.2Yb0.4Er0.08Al0.32F12 codoped with Mg2+/Zn2+/Cu2+. J. Mater. Sci. 2017, 52, 4810–4819.  doi: 10.1007/s10853-016-0716-8

    17. [17]

      Liu, J.; Wang, L. J.; Yina, X. H.; Yu, Q.; Xu, D. Effect of ionic radius on colossal permittivity properties of (A, Ta) co-doped TiO2 (A = alkaline-earth ions) ceramics. Ceram. Int. 2020, 46, 12059–12066.  doi: 10.1016/j.ceramint.2020.01.247

    18. [18]

      Xu, W.; Chen, J. M.; Wang, P.; Zhang, Z. G.; Cao, W. W. Intense red upconversion luminescence from Tm3+/Yb3+ codoped transparent glass ceramic. Opt. Lett. 2012, 37, 205–207.  doi: 10.1364/OL.37.000205

    19. [19]

      Li, G. W.; Liu, Y. S.; Jiang, F. L.; Hong, M. C. Ultrasmall lanthanide-doped NaMgF3 nanocrystals: controlled synthesis and optical properties. Chin. J. Struct. Chem. 2020, 39, 2001–2008.

    20. [20]

      Fartas, R.; Diaf, M.; Martin, I. R.; Buclatin, F. P.; Jouart, J. P. Near infrared and upconversion luminescence of Tm3+-Yb3+ codoped CdF2 single crystals. J. Lumin. 2020, 228, 117594(1)–117594(7).

    21. [21]

      Qi, C. Y.; Chen, L.; Gao, Y.; Wang, Y.; Li, J.; Zhang, L. G.; Luo, Y. S.; Wang, X. J. Digestive ripening-mediated growth of NaYbF4: Tm@NaYF4 core-shell nanoparticles for bioimaging. ACS Appl. Nano Mater. 2020, 3, 10049–10056.  doi: 10.1021/acsanm.0c02057

    22. [22]

      Ding, S.; Yang, X. F.; Song, E. H.; Liang, C. L.; Zhou, B.; Wu, M. M.; Zhou, W. Z.; Zhang, Q. Y. An efficient synthetic strategy for uniform perovskite core-shell nanocubes NaMgF3: Mn2+, Yb3+@NaMgF3: Yb3+ with enhanced near infrared upconversion luminescence. J. Mater. Chem. C 2018, 6, 2342–2350.

    23. [23]

      Dan, H. K.; Zhou, D. C.; Wang, R. F.; Jiao, Q.; Yang, Z. W.; Song, Z. G.; Yu, S.; Yu, X.; Qiu, J. B. Effect of Mn2+ ions on the enhancement red upconversion emission and energy transfer of Mn2+/Tm3+/Yb3+ tri-doped transparent glass-ceramics. Mater. Res. Bull. 2016, 73, 357–361.

  • 加载中
    1. [1]

      Xi TangChunlei ZhuYulu YangShihan QiMengqiu CaiAbdullah N. AlodhaybJianmin Ma . Additive regulating Li+ solvation structure to construct dual LiF−rich electrode electrolyte interphases for sustaining 4.6 V Li||LiCoO2 batteries. Chinese Chemical Letters, 2024, 35(12): 110014-. doi: 10.1016/j.cclet.2024.110014

    2. [2]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    3. [3]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    4. [4]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    5. [5]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    6. [6]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    7. [7]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    8. [8]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    9. [9]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    10. [10]

      Weiping GuoYing ZhuHong-Hua CuiLingyun LiYan YuZhong-Zhen LuoZhigang Zouβ-Pb3P2S8: A new optical crystal with exceptional birefringence effect. Chinese Chemical Letters, 2025, 36(2): 110256-. doi: 10.1016/j.cclet.2024.110256

    11. [11]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    12. [12]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    13. [13]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    14. [14]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    15. [15]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    16. [16]

      Dai-Huo LiuAo WangHong-Yan LüXing-Long WuDan LuoWen-Hao LiJin-Zhi GuoHaozhen DouQianyi MaZhongwei ChenIn situ constructing (MnS/Mn2SnS4)@N,S-ACTs heterostructure with superior Na/Li-storage capabilities in half-cells and pouch full-cells. Chinese Chemical Letters, 2024, 35(11): 109285-. doi: 10.1016/j.cclet.2023.109285

    17. [17]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    18. [18]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    19. [19]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    20. [20]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

Metrics
  • PDF Downloads(4)
  • Abstract views(271)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return