Citation: Li-Ping GUO, Ren-Yuan SONG. Rare-earth Metal Dialkyl Complexes Supported by 1, 3-Disubstituted Indolyl Ligand: Synthesis, Characterization and Catalytic Activity for Isoprene Polymerization[J]. Chinese Journal of Structural Chemistry, ;2021, 40(8): 1055-1060. doi: 10.14102/j.cnki.0254–5861.2011–3172 shu

Rare-earth Metal Dialkyl Complexes Supported by 1, 3-Disubstituted Indolyl Ligand: Synthesis, Characterization and Catalytic Activity for Isoprene Polymerization

  • Corresponding author: Li-Ping GUO, guoliping251@126.com
  • Received Date: 10 March 2021
    Accepted Date: 16 April 2021

    Fund Project: the Natural Science Foundation of Anhui Province 2008085ME174financial support from Anhui Normal University FMS201915

Figures(3)

  • Rare-earth metal dialkyl complexes [1-Bn-3-(DippN=CH)C8H4N]RE(CH2SiMe3)2(thf)2 (Dipp = 2, 6-iPr2C6H3, RE = Y (1) and Er (2)) were prepared through the cyclometalation reactions of the N-Bn-3-imino-functionalized indolyl ligand 1-Bn-3-(DippN=CH)C8H5N with one equivalent of rare-earth metal trialkyl precursors. The structures of compounds 1 and 2 were confirmed by X-ray crystal analyses and characterized by elemental analysis, IR, NMR spectroscopy wherein applicable. In the presence of cocatalysts, these rare-earth metal dialkyl complexes initiated isoprene polymerization with a high activity (95% conversion of 2000 equivalent of isoprene in 360 min), producing polymers with high regioselectivity (1, 4-polymers up to 91%).
  • 加载中
    1. [1]

      Nishiura, M.; Hou, Z. M. Novel polymerization catalysts and hydride clusters from rare-earth dialkyls. Nat. Chem. 2010, 2, 257–268.  doi: 10.1038/nchem.595

    2. [2]

      Cheng, J. H.; Hou, Z. M. Rare-earth dialkyl and dihydride complexes bearing monoanionic ancillary ligands. Sci. China Chem. 2011, 54, 2032–2037.  doi: 10.1007/s11426-011-4439-z

    3. [3]

      Arndt, S.; Okuda, J. Mono(cyclopentadienyl) complexes of the rare-earths. Chem. Rev. 2002, 102, 1953–1976.  doi: 10.1021/cr010313s

    4. [4]

      Mao, W. Q.; Chen, Y. F. Rare-earth metal complexes of β-diketiminato ligands bearing pendant nitrogen or oxygen donors. Coord. Chem. Rev. 2017, 346, 77–90.  doi: 10.1016/j.ccr.2016.12.007

    5. [5]

      (a) Cheng, J. H.; Saliu, K.; Kiel, G. Y.; Ferguson, M. J.; McDonald, R.; Takats, J. Scorpionate-supported dialkyl and dihydride lanthanide complexes: ligand- and solvent-dependent cluster hydride formation. Angew. Chem. Int. Ed. 2008, 4910–4913.
      (b) Yi, W. Y.; Zhang, J.; Zhang, F. J.; Zhang, Y.; Chen, Z. X.; Zhou, X. G. Versatile reactivity of scorpionate-anchored yttrium-dialkyl complexes towards unsaturated substrates. Eur. J. Chem. 2013, 19, 11975–11983.

    6. [6]

      (a) Yu, X. Y.; Li, M.; Hong, J. Q.; Zhou, X. G.; Zhang, L. X. Living 3, 4-(co)polymerization of isoprene/myrcene and one-pot synthesis of a polyisoprene blend catalyzed by binuclear rare-earth metal amidinate complexes. Chem. Eur. J. 2019, 25, 2569–2576.
      (b) Rad'kova, N. Y.; Tolpygin, A. O.; Rad'kov, V. Y.; Khamaletdinova, N. M.; Cherkasov, A. V.; Fukin, G. K.; Trifonov, A. A. Bis(alkyl) rare-earth complexes coordinated by bulky tridentate amidinate ligands bearing pendant Ph2P=O and Ph2P=NR groups. Synthesis, structures and catalytic activity in stereospecific isoprene polymerization. Dalton Trans. 2016, 45, 18572–18584.

    7. [7]

      (a) Zhu, X.; Zhou, S.; Wang, S.; Wei, Y.; Zhang, L.; Wang, F.; Wang, S. Y.; Feng, Z. Rare-earth metal complexes having an unusual indolyl-1, 2-dianion through C–H activation with a novel η1: (μ2-η1: η1) bonding with metals. Chem. Commun. 2012, 48, 12020–12022.
      (b) Feng, Z.; Zhu, X.; Wang, S.; Wang, S. Y.; Zhou, S.; Wei, Y.; Zhang, G.; Deng, B.; Mu, X. Synthesis, structure and reactivity of lanthanide complexes incorporating indolyl ligands in novel hapticities. Inorg. Chem. 2013, 52, 9549–9556.
      (c) Zhu, X.; Wang, S.; Zhou, S.; Wei, Y.; Zhang, L.; Wang, F.; Feng, Z.; Guo, L.; Mu, X. Lanthanide amido complexes incorporating amino-coordinate lithium bridged bis(indolyl) ligands: synthesis, characterization, and catalysis for hydrophosphonylation of aldehydes and aldimines. Inorg. Chem. 2012, 51, 7134–7143.
      (d) Zhang, G.; Wei, Y.; Guo, L.; Zhu, X.; Wang, S.; Zhou, S.; Mu, X. Dinuclear rare-earth metal alkyl complexes supported by indolyl ligands in μ-η2: η1: η1 hapticities and their high catalytic activity for isoprene 1, 4-cis-polymerization. Chem. Eur. J. 2015, 21, 2519–2526.
      (e) Yu, L.; Wang, F. H.; Wang, H.; Wang, S. Y.; Wu, Y. J.; Gu, X. X. Synthesis, structure and catalytic activity of rare-earth metal amino complexes incorporating imino-functionalized indolyl ligand. J. Organo. Chem. 2021, 934, 121661.
      (f) Hong, D. J.; Zhu, X. C.; Wang, S. W.; Wei, Y.; Zhou, S. L.; Huang, Z. M.; Zhu, S.; Wang, R. R.; Yue, W. R.; Mu, X. L. Synthesis, characterization, and reactivity of dinuclear organo-rare-earth metal alkyl complexes supported by 2-amidate functionalized indolyl ligands: substituent effects on coordination and reactivity. Dalton Trans. 2019, 48, 5230–5242.
      (g) Wei, Y.; Song, L. L.; Jiang, L.; Huang, Z. M.; Wang, S. W.; Yuan, Q. B.; Mu, X. L.; Zhu, X. C.; Zhou, S. L. Aluminum complexes with Schiff base bridged bis(indolyl) ligands: synthesis, structure, and catalytic activity for polymerization of rac-lactide. Dalton Trans. 2019, 48, 15290–15299.
      (h) Feng, Z. J.; Huang, Z. M.; Wang, S. W.; Wei, Y.; Zhou, S. L.; Zhu, X. C. Synthesis and characterization of 2-t-butylimino-functionalized indolyl rare-earth metal amido complexes for the catalytic addition of terminal alkynes to carbodiimides: the dimeric complexes with the alkynide species in the μ-η1: η2 bonding modes. Dalton Trans. 2019, 48, 11094–11102.

    8. [8]

      (a) Guo, L. P.; Zhu, X. C.; Zhang, G. C.; Wei, Y.; Ning, L. X.; Zhou, S. L.; Feng, Z. J.; Wang, S. W.; Mu, X. L.; Chen, J.; Jiang, Y. Z. Synthesis and characterization of organo-rare-earth metal monoalkyl complexes supported by carbon σ-bonded indolyl ligands: high specific isoprene 1, 4-cis polymerization catalysts. Inorg. Chem. 2015, 54, 5725–5731.
      (b) Guo, L. P.; Wang, S. W.; Wei, Y.; Zhou, S. L.; Zhu, X. C.; Mu, X. L. Reactivity of 1, 3-disubstituted indoles with lithium compounds: substituents and solvents effects on coordination and reactivity of resulting 1, 3-disubstituted-2-indolyl lithium complexes. Inorg. Chem. 2017, 56, 6197–6207.

    9. [9]

      (a) Wenkert, E.; Udelhofen, J. H.; Bhattacharyya, N. K. 3-Hydroxymethyleneoxindole and its derivatives. J. Am. Chem. Soc. 1959, 81, 3763–3768.
      (b) Zheng, C.; Lu, Y.; Zhang. J.; Chen, X.; Chai, Z.; Ma, W.; Zhao, G. The enantioselective, organocatalyzed Diels-Alder reaction of 2-vinylindoles with α, β-unsaturated aldehydes: an efficient route to functionalized tetrahydrocarbazoles. Chem. Eur. J. 2010, 16, 5853–5857.
      (c) Kalir, A.; Szara, S. Synthesis of 1-benzyltryptamine. J. Med. Chem. 1966, 9, 793–794.

    10. [10]

      Sheldrick, G. M. SADABS: Program for Empirical Absorption Correction of Area Detector Data. University of Göttingen, Germany 1996.

    11. [11]

      Sheldrick, G. M. SHELXTL 5.10 for Windows NT: Structure Determination Software Programs, Bruker Analytical X-ray Systems, Inc., Madison, WI 1997.

    12. [12]

      Wang, D.; Cui, D. M.; Miao, W.; Li, S. H.; Huang, B. T. Rare earth metal complexes bearing thiophene amido ligand: synthesis and structural characterization. Dalton Trans. 2007, 4576–4581.

    13. [13]

      Luconi, L.; Lyubov, D. M.; Bianchini, C.; Rossin, A.; Faggi, C.; Fukin, G. K.; Cherkasov, A. V.; Shavyrin, A. S.; Trifonov, A. A.; Giambastiani, G. Yttrium-amidopyridinate complexes: synthesis and characterization of yttrium-alkyl and yttrium-hydrido derivatives. Eur. J. Inorg. Chem. 2010, 608–620.

    14. [14]

      Shannon, R. D. Revised effective ionic radii and systematic studied of interatomic distances in halides and chalcogenides. Acta Cryst. 1976, A32, 751–767.

    15. [15]

      Hayes, P.; Piers, W.; Parvez, M. Cationic organoscandium β-dikediminato chemistry: arene exchange kinetics in solvent separated ion pairs. J. Am. Chem. Soc. 2003, 125, 5622–5623.  doi: 10.1021/ja034680s

  • 加载中
    1. [1]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    2. [2]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    3. [3]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    4. [4]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    5. [5]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    6. [6]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    7. [7]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    8. [8]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    9. [9]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    10. [10]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    11. [11]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    12. [12]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    13. [13]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    14. [14]

      Haiming WuGaya N. AndrewRajini AnumulaZhixun Luo . Corrigendum to 'How ligand coordination and superatomic-states accommodate the structure and property of a metal cluster: Cu4 (dppy)4 Cl2 vs. Cu21 (dppy)10 with altered photoluminescence' [Chin. Chem. Lett. 35 (2024) 108340]. Chinese Chemical Letters, 2024, 35(12): 109912-. doi: 10.1016/j.cclet.2024.109912

    15. [15]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    16. [16]

      Xue-Jiao WangJun-Li XinHong XiangZe-Yu ZhaoYu-Hang HeHaibo WangGuangyao MeiYi-Cheng MaoJuan XiongJin-Feng Hu . Holotrichones A and B, potent anti-leukemic lindenane-type sesquiterpene trimers with unprecedented complex carbon skeletons from a rare Chloranthus species. Chinese Chemical Letters, 2024, 35(12): 109682-. doi: 10.1016/j.cclet.2024.109682

    17. [17]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    18. [18]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    19. [19]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    20. [20]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

Metrics
  • PDF Downloads(2)
  • Abstract views(272)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return