Citation: Hui XU, Wei-Wei XU, Liu-Wei XU, Zhi-Lin WANG, Shuai-Hua WANG, Qing SU, Bi-Sheng ZHANG, Qing-You ZENG, Shao-Fan WU. Design and Synthesis of Tb3+-doped KGW Crystal for the Exploration of Scintillation Performance with X-ray Imaging[J]. Chinese Journal of Structural Chemistry, ;2021, 40(8): 1023-1030. doi: 10.14102/j.cnki.0254–5861.2011–3134 shu

Design and Synthesis of Tb3+-doped KGW Crystal for the Exploration of Scintillation Performance with X-ray Imaging

  • Corresponding author: Shuai-Hua WANG, shwang@fjirsm.ac.cn
  • Received Date: 4 February 2021
    Accepted Date: 16 March 2021

    Fund Project: the National Natural Science Foundation of China 22075284the National Natural Science Foundation of China 51872287the National Natural Science Foundation of China U2030118Equipment Pre-research Foundation Project of China 61409220309the Financial Support of Fujian Province 2017H0043the Financial Support of Fujian Province 2019T3022

Figures(4)

  • X-ray scintillators have been widely used in many fields owing to their strong penetrating ability, including security inspection, medical imaging, nuclear cameras, high energy physics and so forth. To explore new scintillation materials, we designed and synthesized KGW: Tb bulk scintillation crystals with monoclinic phase structure. We explored the fluorescence performance of KGW: Tb by testing the photoluminescence spectrum and fluorescence decay curve and observed strong green light emission in the visible light range at room temperature. Moreover, our crystal has a high stability under X-ray irradiation, a good sensitivity response and an appreciable light output (3424 ph/MeV) that is approximately twenty times more than PbWO4. Moreover, we used a 0.98 mm thickness polished crystal sheet for X-ray imaging applications and observed excellent results. Therefore, KGW: Tb crystal may be an important direction for X-ray scintillation detection.
  • 加载中
    1. [1]

      Liu, C. M.; Qi, Z. M.; Ma, C. G.; Dorenbos, P.; Hou, D. J.; Zhang, S.; Kuang, X. J.; Zhang, J. H.; Liang, H. B. High light yield of Sr8(Si4O12)Cl8: Eu2+ under X-ray excitation and its temperature-dependent luminescence characteristics. Chem. Mat. 2014, 26, 3709−3715.  doi: 10.1021/cm501055k

    2. [2]

      Zuniga, J.; Gupta, S. K.; Pokhrel, M.; Mao, Y. B. Exploring the optical properties of La2Hf2O7: Pr3+ nanoparticles under UV and X-ray excitation for potential lighting and scintillating applications. New J. Chem. 2018, 42, 9381−9392.  doi: 10.1039/C8NJ00895G

    3. [3]

      Xue, Y. L.; Zhao, D.; Cui, X. Q.; Han, X. Y.; Liu, B. Z.; Fan, Y. P. Crystal structure of scheelite-type LiTb(WO4)2 and multi-color emitting properties doped by Eu3+. Chin. J. Struct. Chem. 2020, 39, 310−320.

    4. [4]

      Fu, Z. X.; Liu, B. R. Solution combustion synthesis, photoluminescence and X-ray luminescence of Eu3+-doped LaAlO3 nanophosphors. Ceram. Int. 2016, 42, 2357−2363.  doi: 10.1016/j.ceramint.2015.10.032

    5. [5]

      Sedov, V.; Kouznetsov, S.; Martyanov, A.; Proydakova, V.; Ralchenko, V.; Khomich, A.; Voronov, V.; Batygov, S.; Kamenskikh, I.; Spassky, D.; Savin, S.; Fedorov, P. Diamond-rare earth composites with embedded NaGdF4: Eu nanoparticles as robust photo- and X-ray-luminescent materials for radiation monitoring screens. ACS Appl. Nano Mater. 2020, 3, 1324−1331.  doi: 10.1021/acsanm.9b02175

    6. [6]

      Zhao, J. T.; Huang, L. H.; Zhao, S. L.; Xu, S. Q. Enhanced luminescence in Tb3+-doped germanate glass ceramic scintillators containing CaF2 nanocrystals. J. Am. Ceram. Soc. 2018, 102, 1720−1725.

    7. [7]

      Ambapuram, M.; Ramireddy, R.; Maddala, G.; Godugunuru, S.; Yerva, P. V. S.; Mitty, R. Effective upconverter andlight scattering dual function LiYF4: Er3+/Yb3+ assisted photoelectrode for high performance cosensitized dye sensitized solar cells. ACS Appl. Electron. Mater. 2020, 2, 962−970.  doi: 10.1021/acsaelm.0c00014

    8. [8]

      Cao, C.; Liu, Q. Y.; Shi, M.; Feng, W.; Li, F. Lanthanide-doped nanoparticles with upconversion and downshifting near-infrared luminescence for bioimaging. Inorg. Chem. 2019, 58, 9351−9357.  doi: 10.1021/acs.inorgchem.9b01071

    9. [9]

      Du, Z.; Zhang, X.; Guo, Z.; Xie, J. N.; Dong, X. H.; Zhu, S.; Du, J. F.; Gu, Z. J.; Zhao, Y. L. X-ray-controlled generation of peroxynitrite based on nanosized LiLuF4: Ce3+ scintillators and their applications for radiosensitization. Adv Mater. 2018, 30, 1804046−9.  doi: 10.1002/adma.201804046

    10. [10]

      Huang, P.; Zheng, W.; Zhou, S. Y.; Tu, D. T.; Chen, Z.; Zhu, H. M.; Li, R. F.; Ma, E.; Huang, M. D.; Chen, X. Y. Lanthanide-doped LiLuF4 upconversion nanoprobes for the detection of disease biomarkers. Angew Chem. Int. Ed. Engl. 2014, 53, 1252−1257.  doi: 10.1002/anie.201309503

    11. [11]

      Valais, I. G.; Kandarakis, I. S.; Nikolopoulos, D. N.; Sianoudis, I. A.; Dimitropoulos, N.; Cavouras, D. A.; Nomicos, C. D.; Panayiotakis, G. S. Luminescence efficiency of Gd2SiO5: Ce scintillator under X-ray excitation. IEEE Trans. Nucl. Sci. 2005, 52, 1830−1835.  doi: 10.1109/TNS.2005.856895

    12. [12]

      Huang, X. Y.; Wang, G. F. Growth and spectroscopic characteristics of Yb3+: LiGd(WO4)2 crystal. Chin. J. Struct. Chem. 2012, 31, 809−820.

    13. [13]

      Hovhannesyan, K. L.; Derdzyan, M. V.; Yeganyan, A. V.; Kisel, V. E.; Rudenkov, A. S.; Kuleshov, N. V.; Petrosyan, A. G. Single crystals of YAP: Yb for ultra short pulse lasers. J. Contemp. Phys. -Arme+ 2020, 55, 131−136.  doi: 10.3103/S1068337220020115

    14. [14]

      Xiao, X. F.; Xu, J. Y.; Zhang, X. F. Growth, optical and scintillation properties of Gd3+ doped Bi4Si3O12 single crystals. Jpn. J. Appl. Phys. 2020, 59, 055502−5.  doi: 10.35848/1347-4065/ab87db

    15. [15]

      Bajor, A. L. Application of automated polarimeter macroscope for investigation of optical inhomogeneity in oxide single crystals. Proc. SPIE 1995, 2373, 327−334.  doi: 10.1117/12.224976

    16. [16]

      Wang, R.; Guo, Q.; Qian, Y. N.; Xing, L. L.; Xu, Y. L. Upconversion properties of LiNbO3 single crystals co-doped with Ho and Yb. Chin. J. Struct. Chem. 2011, 30, 1597−1603.

    17. [17]

      Zhou, J. C.; Huang, F.; Xu, J.; Chen, H.; Wang, Y. S. Luminescence study of a self-activated and rare earth activated Sr3La(VO4)3 phosphor potentially applicable in W-LEDs. J. Mater. Chem. C 2015, 3, 3023−3028.  doi: 10.1039/C4TC02783C

    18. [18]

      Chen, S. N.; Pang, T.; Mao, J. W. Upconversion temperature sensing assists the understanding of light-emitting properties in Gd2(MoO4)3: Y3+/Yb3+/Er3+-based LED. Appl. Phys. A-Mater. Sci. Process. 2020, 126, 433−7.  doi: 10.1007/s00339-020-03610-6

    19. [19]

      Novotny, M.; Hruska, P.; Fitl, P.; Maresova, E.; Havlova, S.; Bulir, J.; Fekete, L.; Yatskiv, R.; Vrnata, M.; Cizek, J.; Liedke, M. O.; Lancok, J. Investigation of optical properties and defects structure of rare earth (Sm, Gd, Ho) doped zinc oxide thin films prepared by pulsed laser deposition. Acta Phys. Pol. A 2020, 137, 215−218.  doi: 10.12693/APhysPolA.137.215

    20. [20]

      Pang, T. Simultaneous improvement in emission intensity and spectral purity of red photon upconversion in Gd2O3: Yb3+/Er3+ phosphors under 1550 nm excitation. Appl. Phys. A-Mater. Sci. Process. 2020, 126, 684−9.  doi: 10.1007/s00339-020-03878-8

    21. [21]

      Vařák, P.; Mrázek, J.; Blanc, W.; Aubrecht, J.; Kamrádek, M.; Podrazký, O. Preparation and properties of Tm-doped SiO2-ZrO2 phase separated optical fibers for use in fiber lasers. Opt. Mater. Express. 2020, 10, 1383−1391.  doi: 10.1364/OME.394068

    22. [22]

      Yashaswini; Pratibha, S.; Lokesh, R.; Dhananjaya, N.; Pandurangappa, C. Disaccharide assisted LaAlO3: Ce3+ perovskite: structural and optical studies suitable for display devices. Inorg. Chem. Commun. 2021, 123, 108342−23.  doi: 10.1016/j.inoche.2020.108342

    23. [23]

      Makek, M.; Bosnar, D.; Kozuljevic, A. M.; Pavelic, L. Investigation of GaGG: Ce with TOFPET2 ASIC readout for applications in gamma imaging systems. Crystals 2020, 10, 1073−10.  doi: 10.3390/cryst10121073

    24. [24]

      Tamulaitis, G.; Auffray, E.; Gola, A.; Korzhik, M.; Mazzi, A.; Mechinski, V.; Nargelas, S.; Talochka, Y.; Vaitkevicius, A.; Vasil'ev, A. Improvement of the timing properties of Ce-doped oxyorthosilicate LYSO scintillating crystals. J. Phys. Chem. Solids 2020, 139, 109356−11.  doi: 10.1016/j.jpcs.2020.109356

    25. [25]

      Wu, Y. T.; Peng, J.; Rutstrom, D.; Koschan, M.; Foster, C.; Melcher, C. L. Unraveling the critical role of site occupancy of lithium codopants in Lu2SiO5: Ce3+ single-crystalline scintillators. ACS Appl. Mater. Interfaces 2019, 11, 8194−8201.  doi: 10.1021/acsami.8b19040

    26. [26]

      Fan, L. C.; Wu, Y. Q.; Zhang, Z. J.; Shi, Y.; Xie, J. J. Fabrication and luminescent properties of fine-grained cerium-doped lutetium-yttrium oxyorthosilicate ceramics. Opt. Mater. 2019, 109563−6.

    27. [27]

      Yanagida, T. Inorganic scintillating materials and scintillation detectors. P. Jpn. Acad. B-Phys. 2018, 94, 75−97.  doi: 10.2183/pjab.94.007

    28. [28]

      Dai, S. B.; Zhao, H.; Tu, Z. H.; Zhu, S. Q.; Yin, H.; Li, Z.; Chen, Z. Q. High-peak-power narrowband eye-safe intracavity Raman laser. Opt. Express 2020, 28, 36046−36054.  doi: 10.1364/OE.409257

    29. [29]

      Kifle, E.; Loiko, P.; Romero, C.; de Aldana, J. R. V.; Zakharov, V.; Gurova, Y.; Veniaminov, A.; Petrov, V.; Griebner, U.; Thouroude, R.; Laroche, M.; Camy, P.; Aguilo, M.; Diaz, F.; Mateos, X. Tm3+ and and Ho3+ colasing in in-band pumped waveguides fabricated by femtosecond laser writing. Opt. Lett. 2021, 46, 122−125.  doi: 10.1364/OL.399546

    30. [30]

      Koerner, J.; Krueger, M.; Reiter, J.; Muenzer, A.; Hein, J.; Kaluza, M. C. Temperature dependent spectroscopic study of Yb3+-doped KG(WO4)2, KY(WO4)2, YAlO3 and YLiF4 for laser applications. Opt. Mater. Express 2020, 10, 2425−2438.  doi: 10.1364/OME.398740

    31. [31]

      Kasprowicz, D.; Chiasera, A.; Chappini, A.; Zur, L.; Gapinski, J.; Chrunik, M.; Majchrowski, A.; Jastrzab, R.; Ferrari, M. Up-conversion luminescence of RE3+ -doped polymer composites KGd(WO4)2 & PMMA. Opt. Mater. 2019, 88, 366−371.  doi: 10.1016/j.optmat.2018.12.001

    32. [32]

      Kasprowicz, D.; Głuchowski, P.; Maciejewska, B. M.; Chrunik, M.; Majchrowski, A. Up-conversion luminescence of rare earth-doped KGd(WO4)2 phosphors for tunable multicolour light generation. New J. Chem. 2017, 41, 9847−9856.  doi: 10.1039/C7NJ01823A

    33. [33]

      Kowalczyk, M.; Kaczkan, M.; Majchrowski, A.; Malinowski, M. Short-wavelength luminescence of Eu3+-doped KGd(WO4)2 crystals. Opt. Mater. 2019, 98, 109507−7.  doi: 10.1016/j.optmat.2019.109507

    34. [34]

      Sahani, R. M.; Kumari, C.; Pandya, A.; Dixit, A. Efficient alpha radiation detector using low temperature hydrothermally grown ZnO: Ga nanorod scintillator. Sci Rep. 2019, 9, 11354−9.  doi: 10.1038/s41598-019-47732-1

    35. [35]

      Fawad, U.; Kim, H. J.; Gul, I.; Khan, M.; Tahir, S.; Jamal, T.; Muhammad, W. Proton, UV, and X-ray induced luminescence in Tb3+ doped LuGd2Ga2Al3O12 phosphors. Crystals 2020, 10, 844−9.  doi: 10.3390/cryst10090844

    36. [36]

      Liu, Q.; Pan, H. M.; Chen, X. P.; Li, X. Y.; Liu, X.; Li, W.; Hu, Z. W.; Zhang, X.; Wu, L. X.; Li, J. Gd2O2S: Tb scintillation ceramics fabricated from high sinterability nanopowders via hydrogen reduction. Opt. Mater. 2019, 94, 299−304.  doi: 10.1016/j.optmat.2019.05.022

    37. [37]

      Nandyala, S. H.; Walsh, B. M.; Hungerford, G.; Santos, J. D.; Stamboulis, A. Time-resolved and fluorescence excitation-emission matrix measurements of lanthanide (Gd3+, Tb3+ and Dy3+) doped silver-zinc borate glasses. Mater. Lett. 2020, 273, 127935−5.  doi: 10.1016/j.matlet.2020.127935

    38. [38]

      Rudramamba, K. S.; Taherunnisa, S. K.; Reddy, D. V. K.; Veeraiah, N.; Reddy, M. R. The structural and warm light emission properties of Sm3+/Tb3+ doubly doped strontium bismuth borosilicate glasses for LED applications. Spectrochimica Acta Pt. A-Molec. Biomolec. Spectr. 2019, 220, 117097−11.  doi: 10.1016/j.saa.2019.05.002

  • 加载中
    1. [1]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    2. [2]

      Yan-Jiang LiShu-Lei ChouYao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389

    3. [3]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    4. [4]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    5. [5]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    6. [6]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    7. [7]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    8. [8]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

    9. [9]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    10. [10]

      Liwen WangBoyang WangSiyu LuShubo LvXiaoli Qu . High quantum yield yellow emission carbon dots for the construction of blue light blocking films. Chinese Chemical Letters, 2025, 36(2): 110497-. doi: 10.1016/j.cclet.2024.110497

    11. [11]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

    12. [12]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    13. [13]

      Jie YangXin-Yue LouDihua DaiJingwei ShiYing-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818

    14. [14]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    15. [15]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    16. [16]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    17. [17]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    18. [18]

      Lingjiang KouYong WangJiajia SongTaotao AiWenhu LiMohammad Yeganeh GhotbiPanya WattanapaphawongKoji Kajiyoshi . Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 110368-. doi: 10.1016/j.cclet.2024.110368

    19. [19]

      Xiaomeng HuJie YuLijie SunLinfeng ZhangWei ZhouDongpeng YanXinrui Wang . Synthesis of an AVB@ZnTi-LDH composite with synergistically enhance UV blocking activity and high stability for potential application in sunscreen formulations. Chinese Chemical Letters, 2024, 35(11): 109466-. doi: 10.1016/j.cclet.2023.109466

    20. [20]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

Metrics
  • PDF Downloads(1)
  • Abstract views(300)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return