Citation: Ming CHEN, Jun-Mei ZHAO, Chuan-Fu SUN. High-volumetric-capacity WSe2 Anode for Potassium-ion Batteries[J]. Chinese Journal of Structural Chemistry, ;2021, 40(7): 926-932. doi: 10.14102/j.cnki.0254–5861.2011–3106 shu

High-volumetric-capacity WSe2 Anode for Potassium-ion Batteries

  • Corresponding author: Chuan-Fu SUN, cfsun@fjirsm.ac.cn
  • Received Date: 20 January 2021
    Accepted Date: 21 February 2021

    Fund Project: the National Natural Science Foundation of China 21771180the National Natural Science Foundation of China 21971239Natural Science Foundation of Fujian Province 2020J06032

Figures(4)

  • Exploring high-capacity electrode materials is critical for the development of K-ion batteries. In this work, we report a layered-structured tungsten selenide (WSe2) anode, which not only delivers an ultrahigh volumetric capacity of 1772.8 Ah/L (or 188.4 mAh/g) at a current density of 5 mA/g but also exhibits good rate capability (72 mAh/g at 200 mA/g) and cycling stability (83.14% capacity retention over 100 cycles at 100 mA/g). We have also revealed the underlying reaction mechanism through ex situ X-ray powder diffraction. Furthermore, proof-of-concept full-cell batteries comprising of WSe2 anodes and Prussian Blue cathodes are capable of delivering an energy density of 135.2 Wh/kgcathode+anode. This work highlights the potential of WSe2 as a promising high-volumetric-capacity anode material for rechargeable potassium-ion batteries.
  • 加载中
    1. [1]

      Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561−24.  doi: 10.1002/adma.201800561

    2. [2]

      Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652‒657.  doi: 10.1038/451652a

    3. [3]

      Goriparti, S.; Miele, E.; De Angelis, F.; Di Fabrizio, E.; Zaccaria, R. P.; Capiglia, C. Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 2014, 257, 421‒443.  doi: 10.1016/j.jpowsour.2013.11.103

    4. [4]

      Komaba, S.; Hasegawa, T.; Dahbi, M.; Kubota, K. Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 2015, 60, 172‒175.  doi: 10.1016/j.elecom.2015.09.002

    5. [5]

      Wang, G.; Xiong, X. H.; Xie, D.; Lin, Z. H.; Zheng, J.; Zheng, F. H.; Li, Y. P.; Liu, Y. Z.; Yang, C. H.; Liu, M. L. Chemically activated hollow carbon nanospheres as a high-performance anode material for potassium ion batteries. J. Mater. Chem. A 2018, 6, 24317‒24323.  doi: 10.1039/C8TA09751H

    6. [6]

      Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2016, 16, 16‒22.

    7. [7]

      He, H.; Man, Y.; Yang, J.; Xie, J.; Xu, M. MoO2 nanosheets embedded in amorphous carbon matrix for sodium-ion batteries. Roy. Soc. Open Sci. 2017, 4, 170892‒7.  doi: 10.1098/rsos.170892

    8. [8]

      Ren, X.; Zhao, Q.; McCulloch, W. D.; Wu, Y. MoS2 as a long-life host material for potassium ion intercalation. Nano Research 2017, 10, 1313‒1321.  doi: 10.1007/s12274-016-1419-9

    9. [9]

      Zhang, R.; Bao, J.; Pan, Y.; Sun, C. F. Highly reversible potassium-ion intercalation in tungsten disulfide. Chem. Sci. 2019, 10, 2604‒2612.  doi: 10.1039/C8SC04350G

    10. [10]

      Yu, X. Y.; Hu, H.; Wang, Y.; Chen, H.; Lou, X. W. Ultrathin MoS2 nanosheets supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties. Angew. Chem. Int. Ed. 2015, 54, 7395‒7398.  doi: 10.1002/anie.201502117

    11. [11]

      Wu, R.; Wang, D. P.; Rui, X.; Liu, B.; Zhou, K.; Law, A. W.; Yan, Q.; Wei, J.; Chen, Z. In-situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for high-performance lithium-ion batteries. Adv. Mater. 2015, 27, 3038‒3044.  doi: 10.1002/adma.201500783

    12. [12]

      Jiao, X.; Liu, X.; Wang, B.; Wang, G.; Wang, X.; Wang, H. A controllable strategy for the self-assembly of WM nanocrystals/nitrogen-doped porous carbon superstructures (M = O, C, P, S, and Se) for sodium and potassium storage. J. Mater. Chem. A 2020, 8, 2047‒2065.  doi: 10.1039/C9TA11312F

    13. [13]

      Zhang, R.; Huang, J.; Deng, W.; Bao, J.; Pan, Y.; Huang, S.; Sun, C. F. Safe, low-cost, fast-kinetics and low-strain inorganic-open-framework anode for potassium-ion batteries. Angew. Chem. Int. Ed. 2019, 58, 16474‒16479.  doi: 10.1002/anie.201909202

    14. [14]

      Mao, M.; Cui, C.; Wu, M.; Zhang, M.; Gao, T.; Fan, X.; Chen, J.; Wang, T.; Ma, J.; Wang, C. Flexible ReS2 nanosheets/N-doped carbon nanofibers-based paper as a universal anode for alkali (Li, Na, K) ion battery. Nano Energy 2018, 45, 346‒352.  doi: 10.1016/j.nanoen.2018.01.001

    15. [15]

      Xu, B.; Ma, X.; Tian, J.; Zhao, F.; Liu, Y.; Wang, B.; Yang, H.; Xia, Y. Layer-structured NbSe2 anode material for sodium-ion and potassium-ion batteries. Ionics 2019, 25, 4171‒4177.  doi: 10.1007/s11581-019-03005-5

    16. [16]

      Wu, M.; Yang, J.; Ng, D. H. L.; Ma, J. Rhenium diselenide anchored on reduced graphene oxide as anode with cyclic stability for potassium-ion battery. Phys. Status Solidi Rapid Res. Lett. 2019, 13, 1900329‒7.  doi: 10.1002/pssr.201900329

    17. [17]

      Wang, W.; Jiang, B.; Qian, C.; Lv, F.; Feng, J.; Zhou, J.; Wang, K.; Yang, C.; Yang, Y.; Guo, S. Pistachio-shuck-like MoSe2/C core/shell nanostructures for high-performance potassium-ion storage. Adv. Mater. 2018, 30, 1801812‒7.  doi: 10.1002/adma.201801812

    18. [18]

      Sun, C. F.; Hu, J.; Wang, P.; Cheng, X. Y.; Lee, S. B.; Wang, Y. Li3PO4 matrix enables a long cycle life and high energy efficiency bismuth-based battery. Nano Lett. 2016, 16, 5875‒5882.  doi: 10.1021/acs.nanolett.6b02720

    19. [19]

      Sun, C. F.; Zhu, H.; Okada, M.; Gaskell, K.; Inoue, Y.; Hu, L.; Wang, Y. Interfacial oxygen stabilizes composite silicon anodes. Nano Lett. 2015, 15, 703‒708.  doi: 10.1021/nl504242k

    20. [20]

      Jian, Z.; Luo, W.; Ji, X. Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 2015, 137, 11566‒11569.  doi: 10.1021/jacs.5b06809

    21. [21]

      Fan, H. N.; Wang, X. Y.; Yu, H. B.; Gu, Q. F.; Chen, S. L.; Liu, Z.; Chen, X. H.; Luo, W. B.; Liu, H. K. Enhanced potassium ion battery by inducing interlayer anionic ligands in MoS1.5Se0.5 nanosheets with exploration of the mechanism. Adv. Energy Mater. 2020, 10, 1904162‒9.  doi: 10.1002/aenm.201904162

    22. [22]

      Jian, Z.; Xing, Z.; Bommier, C.; Li, Z.; Ji, X. Hard carbon microspheres: potassium-ion anode versus sodium-ion anode. Adv. Energy Mater. 2016, 6, 1501874‒5.  doi: 10.1002/aenm.201501874

    23. [23]

      Hu, X.; Liu, Y.; Chen, J.; Yi, L.; Zhan, H.; Wen, Z. Fast redox kinetics in Bi-heteroatom doped 3D porous carbon nanosheets for high-performance hybrid potassium-ion battery capacitors. Adv. Energy Mater. 2019, 9, 1901533‒10.  doi: 10.1002/aenm.201901533

    24. [24]

      Alvin, S.; Cahyadi, H. S.; Hwang, J.; Chang, W.; Kwak, S. K.; Kim, J. Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon. Adv. Energy Mater. 2020, 10, 2000283‒16.  doi: 10.1002/aenm.202000283

    25. [25]

      Fan, L.; Ma, R.; Wang, J.; Yang, H.; Lu, B. An ultrafast and highly stable potassium-organic battery. Adv. Mater. 2018, 30, 1805486‒8.  doi: 10.1002/adma.201805486

    26. [26]

      Fan, L.; Ma, R.; Zhang, Q.; Jia, X.; Lu, B. Graphite anode for a potassium-ion battery with unprecedented performance. Angew. Chem. Int. Ed. 2019, 58, 10500‒10505.  doi: 10.1002/anie.201904258

    27. [27]

      Han, J.; Niu, Y.; Bao, S. J.; Yu, Y. N.; Lu, S. Y.; Xu, M. Nanocubic KTi2(PO4)3 electrodes for potassium-ion batteries. Chem. Commun. 2016, 52, 11661‒11664.  doi: 10.1039/C6CC06177J

    28. [28]

      Kishore, B.; Venkatesh, G.; Munichandraiah, N. K2Ti4O9: a promising anode material for potassium ion batteries. J. Electrochem. Soc. 2016, 163, A2551‒A2554.  doi: 10.1149/2.0421613jes

    29. [29]

      Lakshmi, V.; Chen, Y.; Mikhaylov, A. A.; Medvedev, A. G.; Sultana, I.; Rahman, M. M.; Lev, O.; Prikhodchenko, P. V.; Glushenkov, A. M. Nanocrystalline SnS2 coated onto reduced graphene oxide: demonstrating the feasibility of a non-graphitic anode with sulfide chemistry for potassium-ion batteries. Chem. Commun. 2017, 53, 8272‒8275.  doi: 10.1039/C7CC03998K

    30. [30]

      Lei, K.; Li, F.; Mu, C.; Wang, J.; Zhao, Q.; Chen, C.; Chen, J. High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes. Energy Environ. Sci. 2017, 10, 552‒557.  doi: 10.1039/C6EE03185D

    31. [31]

      Sultana, I.; Rahman, M. M.; Ramireddy, T.; Chen, Y.; Glushenkov, A. M. High capacity potassium-ion battery anodes based on black phosphorus. J. Mater. Chem. A 2017, 5, 23506‒23512.  doi: 10.1039/C7TA02483E

    32. [32]

      Sultana, I.; Ramireddy, T.; Rahman, M. M.; Chen, Y.; Glushenkov, A. M. Tin-based composite anodes for potassium-ion batteries. Chem. Commun. 2016, 52, 9279‒9282.  doi: 10.1039/C6CC03649J

    33. [33]

      Wang, L.; Zou, J.; Chen, S.; Zhou, G.; Bai, J.; Gao, P.; Wang, Y.; Yu, X.; Li, J.; Hu, Y. S.; Li, H. TiS2 as a high performance potassium ion battery cathode in ether-based electrolyte. Energy Storage Mater. 2018, 12, 216‒222.  doi: 10.1016/j.ensm.2017.12.018

    34. [34]

      Zhou, J.; Wang, L.; Yang, M.; Wu, J.; Chen, F.; Huang, W.; Han, N.; Ye, H.; Zhao, F.; Li, Y.; Li, Y. Hierarchical VS2 nanosheet assemblies: a universal host material for the reversible storage of alkali metal ions. Adv. Mater. 2017, 29, 1702061‒8.  doi: 10.1002/adma.201702061

    35. [35]

      Xue, L.; Li, Y.; Gao, H.; Zhou, W.; Lu, X.; Kaveevivitchai, W.; Manthiram, A.; Goodenough, J. B. Low-cost high-energy potassium cathode. J. Am. Chem. Soc. 2017, 139, 2164‒2167.  doi: 10.1021/jacs.6b12598

  • 加载中
    1. [1]

      Jun-Ming CaoKai-Yang ZhangJia-Lin YangZhen-Yi GuXing-Long Wu . Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives. Chinese Chemical Letters, 2024, 35(4): 109304-. doi: 10.1016/j.cclet.2023.109304

    2. [2]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    3. [3]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    4. [4]

      Yue Wang Caixia Xu Xingtao Tian Siyu Wang Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167

    5. [5]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    6. [6]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    7. [7]

      Shengyu ZhaoXuan YuYufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933

    8. [8]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    9. [9]

      Mei-Chen LiuQing-Song LiuYi-Zhou QuanJia-Ling YuGang WuXiu-Li WangYu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123

    10. [10]

      Ya SongMingxia ZhouZhu ChenHuali NieJiao-Jing ShaoGuangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200

    11. [11]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    12. [12]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    13. [13]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    14. [14]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    15. [15]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    16. [16]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    17. [17]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    18. [18]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    19. [19]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    20. [20]

      Yu DengYan LiuYonghui DengJinsheng ChengYidong ZouWei LuoIn situ sulfur-doped mesoporous tungsten oxides for gas sensing toward benzene series. Chinese Chemical Letters, 2024, 35(7): 108898-. doi: 10.1016/j.cclet.2023.108898

Metrics
  • PDF Downloads(1)
  • Abstract views(197)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return