Citation: Hong-Xia LI, Yu-Mei QIAN, Li-Sheng XU. Design, Synthesis and Anticancer Activity Evaluation of Novel Quinazoline Derivatives as EFGR Inhibitors[J]. Chinese Journal of Structural Chemistry, ;2021, 40(7): 933-941. doi: 10.14102/j.cnki.0254–5861.2011–3082 shu

Design, Synthesis and Anticancer Activity Evaluation of Novel Quinazoline Derivatives as EFGR Inhibitors

  • Corresponding author: Hong-Xia LI, szxy2016hx@163.com
  • Received Date: 28 December 2020
    Accepted Date: 12 March 2021

    Fund Project: the Suzhou University Natural Science Key Project 2017yzd11the Suzhou University Natural Science Key Project 2020ykf23the Suzhou University Natural Science Key Project 2020ykf24National Engineering Laboratory Open Fund Project NEL-SCRT 002Natural Science Foundation of An Hui Province 1908085MC100Natural Science Foundation of An Hui Province KJ2020A0729Natural Science Foundation of An Hui Province KJ2020A0737

Figures(2)

  • Malignant tumor is one of the major diseases that seriously threaten human health today. Compared with traditional chemotherapy, targeted drug therapy has become a new idea of tumor therapy. And EGFR (epidermal growth factor receptor) is highly expressed in many human tumor cell lines, which is a biomarker of tumor proliferation. In this paper, small molecule tyrosine kinase inhibitors with quinazoline structure aiming at EGFR were studied. A series of novel quinazoline derivatives (4a~4l) have been designed and synthesized from 4-hydroxyquinazoline as the parent core. Structures of target compounds were characterized by 1H NMR and 13C NMR spectra. The in vitro anticancer activity of compounds 4a~4l was evaluated by MTT assay against Hela, MCF-7 and A549 tumor cell lines, and apoptosis-inducing capacity was investigated by Annexin-V/PI staining assay. The results showed that all compounds had good antitumor activity against the test tumor cell lines. Especially, compound 4a exhibited the best anticancer activity (IC50 = 10.23 μM) against Hela cell lines, remarkable ability to induce apoptosis, and low toxicity, which identified 4a as a promising anticancer drug aiming at EFGR.
  • 加载中
    1. [1]

      Wang, Y. C.; Long, J. B.; Gao, H.; Tang, Z. L. 2-Aminothiazole: a privileged scaffold for the discovery of anti-cancer agents. Eur. J. Med. Chem. 2020, 210, 112953–112967.

    2. [2]

      Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D. M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Inter. J. Cancer. 2015, 136, E359–86.  doi: 10.1002/ijc.29210

    3. [3]

      Mahoney, K. M.; Rennert, P. D.; Freeman, G. J. Combination cancer immunotherapy and new immunomodulatory targets. Nat. Rev. Drug Discov. 2015, 14, 561–584.  doi: 10.1038/nrd4591

    4. [4]

      Michot, J. M.; Bigenwald, C.; Champiat, S.; Collins, M.; Carbonnel, F.; Postel-Vinay, S.; Berdelou, A.; Varga, A.; Bahleda, R.; Hollebecque, A.; Massard, C.; Fuerea, A.; Ribrag, V.; Gazzah, A.; Armand, J. P.; Amellal, N.; Angevin, E.; Noel, N.; Boutros, C.; Mateus, C.; Robert, C.; Soria, J. C.; Marabelle, A.; Lambotte, O. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur. J. Cancer. 2016, 54, 139–148.  doi: 10.1016/j.ejca.2015.11.016

    5. [5]

      Miller, K. D.; Siegel, R. L.; Lin, C. C.; Mariotto, A. B.; Kramer, J. L.; Rowland, J. H.; Stein, K. D.; Alteri, R.; Jemal, A. Cancer treatment and survivorship statistics. Cancer J. Clin. 2016, 66, 271–289.  doi: 10.3322/caac.21349

    6. [6]

      Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm. 2015, 93, 52–79.  doi: 10.1016/j.ejpb.2015.03.018

    7. [7]

      Postow, M. A. Managing immune checkpoint-blocking antibody side effects. Am. Soc. Clin. Oncol. Educ. Book. 2015, 35, 76–83.

    8. [8]

      Therasse, P.; Arbuck, S. G.; Eisenhauer, E. A.; Wanders, J.; Kaplan, R. S.; Rubinstein. L.; Verweij, J.; Van, G. M.; van, O. A. T.; Christian, M. C.; Gwyther, S. G. New guidelines to evaluate the response to treatment in solid tumors. J. Natl. Cancer Inst. 2000, 3, 205–216.

    9. [9]

      Chen, Z.; Jiang, S.; Li, X.; Zhang, J.; Zhang, L. Efficacy and safety of anti-angiogenic drugs combined with erlotinib in the treatment of advanced non-small cell lung cancer: a meta-analysis of randomized clinical trials. Ann. Palliat. Med. 2021, 10, 21037/apm-20-1621.

    10. [10]

      Andrade, J. T.; Santos, F. R. S.; Lima, W. G.; Sousa, C. D. F.; Oliveira, L. S. F. M.; Rosy, I. M. A.; Ribeiro, R. I. M. A.; Gomes, A. J. P. S.; Araújo, M. G. F.; Villar, J. A. F. P.; Ferreira, J. M. S. Design, synthesis, biological activity and structure-activity relationship studies of chalcone derivatives as potential anti-Candida agents. J. Antibiot. 2018, 71, 702–712.  doi: 10.1038/s41429-018-0048-9

    11. [11]

      Lynch, T. J.; Bell, D. W.; Sordella, R.; Gurubhagavatula, S.; Okimoto, R. A.; Brannigan, B. W.; Harris, P. L.; Haserlat, S. M.; Supko, J. G.; Haluska, F. G.; Louis, D. N.; Christiani, D. C.; Settleman, J.; Haber, D. A. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. New England J. Med. 2004, 350, 2129–2139.  doi: 10.1056/NEJMoa040938

    12. [12]

      Paez, J. G.; Jänne, P. A.; Lee, J. C.; Tracy, S.; Greulich, H.; Gabriel, S.; Herman, P.; Kaye, F. J.; Lindeman, N.; Boggon, T. J.; Naoki, K.; Sasaki, H.; Fujii, Y.; Eck, M. J.; Sellers, W. R.; Johnson, B. E.; Meyerson, M. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004, 304, 1497–1500.  doi: 10.1126/science.1099314

    13. [13]

      Tsao, M. S.; Sakurada, A.; Cutz, J. C.; Zhu, C. Q.; Kamel-Reid, S.; Squire, J.; Lorimer, I.; Zhang, T.; Liu, N.; Daneshmand, M.; Marrano, P.; Santos, G. C.; Lagarde, A.; Richardson, F.; Seymour, L.; Whitehead, M.; Ding, K.; Pater, J.; Shepherd, F. A. Erlotinib in lung cancer-molecular and clinical predictors of outcome. New England. J. Med. 2006, 353, 133–144.

    14. [14]

      Zheng, Y. G.; Zhang, W. Q.; Meng, L.; Wu, X. Q.; Zhang, L.; An, L.; Li, C. L.; Gao, C. Y.; Xu, L.; Liu, Y. Design, synthesis and biological evaluation of 4-aniline quinazoline derivatives conjugated with hydrogen sulfide (H2S) donors as potent EGFR inhibitors against L858R resistance mutation. Eur. J. Med. Chem. 2020, 202, 112522–112532.  doi: 10.1016/j.ejmech.2020.112522

    15. [15]

      Thorn, D. A.; An, X. F.; Zhang, Y.; Pigini, M.; Li, J. X. Characterization of the hypothermic effects of imidazoline I2 receptor agonists in rats. Brit. J. Pharmacol. 2012, 166, 1936–1945.  doi: 10.1111/j.1476-5381.2012.01894.x

    16. [16]

      Nasr, M. N.; Gineinah, M. M. Pyrido 2, 3-d pyrimidines and pyrimido 5΄4΄: 5, 6 pyrido 2, 3-d pyrimidines as new antiviral agents: synthesis and biological activity. Arch. Pharm. 2002, 335, 289–295.  doi: 10.1002/1521-4184(200208)335:6<289::AID-ARDP289>3.0.CO;2-Z

    17. [17]

      Chandrika, P. M.; Yakaiah, T.; Rao, A. R. R.; Narsaiah, B.; Reddy, N. C.; Sridhar, V.; Rao, J. V. Synthesis of novel 4, 6-disubstituted quinazoline derivatives, their anti-inflammatory and anti-cancer activity (cytotoxic) against U937 leukemia cell lines. Eur. J. Med. Chem. 2008, 43, 846–852.  doi: 10.1016/j.ejmech.2007.06.010

    18. [18]

      Azzoli, C. G.; Ng, T. Commentary: preoperative gefitinib for stage II-III non-small cell lung cancer with EGFR mutation: a stich in time, or delay from stiches? J. Thorac. Cardiovasc Surg. 2021, 161, 444–446.  doi: 10.1016/j.jtcvs.2020.04.028

    19. [19]

      Sequist, L. V.; Waltman, B. A.; Dias-Santagata, D.; Digumarthy, S.; Turke, A. B.; Fidias, P.; Bergethon, K.; Shaw, A. T.; Gettinger, S.; Cosper, A. K.; Akhavanfard, S.; Heist, R. S.; Temel, J.; Christensen, J. G.; Wain, J. C.; Lynch, T. J.; Vernovsky, K.; Mark, E. J.; Lanuti, M.; Iafrate, A. J.; Mino-Kenudson, M.; Engelman, J. A. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl. Med. 2011, 3, 75ra26.

    20. [20]

      Li, D.; Ambrogio, L.; Shimamura, T.; Kubo, S.; Takahashi, M.; Chirieac, L. R.; Padera, R. F.; Shapiro, G. I.; Baum, A.; Himmelsbach, F.; Rettig, W. J.; Meyerson, M.; Solca, F.; Greulich, H.; Wong, K. K. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 2008, 27, 4702–4711.  doi: 10.1038/onc.2008.109

    21. [21]

      Cross, D. A.; Ashton, S. E.; Ghiorghiu, S.; Eberlein, C.; Nebhan, C. A.; Spitzler, P. J.; Orme, J. P.; Finlay, M. R.; Ward, R. A.; Mellor, M. J.; Hughes, G.; Rahi, A.; Jacobs, V. N.; Red, B. M.; Ichihara, E.; Sun, J.; Jin, H.; Ballard, P.; Al-Kadhimi, K.; Rowlinson, R.; Klinowska, T.; Richmond, G. H.; Cantarini, M.; Kim, D. W.; Ranson, M. R.; Pao, W. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Dis. 2014, 4, 1046–1061.  doi: 10.1158/2159-8290.CD-14-0337

    22. [22]

      Miura, S.; Yamanaka, T.; Kato, T.; Ikeda, S.; Horinouchi, H.; Ichihara, E.; Kanazu, M.; Takiguchi, Y.; Tanaka, K.; Goto, Y.; Sata, M.; Hagiwara, K.; Okamoto, H.; Tanaka, H. Treatment rationale and design of a phase III study of afatinib or chemotherapy in patients with nonesmall-cell lung cancer harboring sensitizing uncommon epidermal growth factor receptor mutations. Clin. Lung Cancer. 2020, 21, E592–E596.  doi: 10.1016/j.cllc.2020.05.011

    23. [23]

      Liang, Q.; Wang, J.; Zhao, L.; Hou, J.; Hu, Y.; Shi, J. Recent advances of dual FGFR inhibitors as a novel therapy for cancer. Eur. J. Med. Chem. 2021, 214, 113205–113205.  doi: 10.1016/j.ejmech.2021.113205

  • 加载中
    1. [1]

      Jing ZhangCharles WangYaoyao ZhangHaining XiaYujuan WangKun MaJunfeng Wang . Application of magnetotactic bacteria as engineering microrobots: Higher delivery efficiency of antitumor medicine. Chinese Chemical Letters, 2024, 35(10): 109420-. doi: 10.1016/j.cclet.2023.109420

    2. [2]

      Jin WangXiaoyan PanJunyu ZhangQingqing ZhangYanchen LiWeiwei GuoJie Zhang . Active molecule-based theranostic agents for tumor vasculature normalization and antitumor efficacy. Chinese Chemical Letters, 2024, 35(8): 109187-. doi: 10.1016/j.cclet.2023.109187

    3. [3]

      Zhaomin TangQian HeJianren ZhouShuang YanLi JiangYudong WangChenxing YaoHuangzhao WeiKeda YangJiajia Wang . Active-transporting of charge-reversal Cu(Ⅱ)-doped mesoporous silica nanoagents for antitumor chemo/chemodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109742-. doi: 10.1016/j.cclet.2024.109742

    4. [4]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    5. [5]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    6. [6]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    7. [7]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    8. [8]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    9. [9]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    10. [10]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    11. [11]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    12. [12]

      Guo-Ping YinYa-Juan LiLi ZhangLing-Gao ZengXue-Mei LiuChang-Hua Hu . Citrinsorbicillin A, a novel homotrimeric sorbicillinoid isolated by LC-MS-guided with cytotoxic activity from the fungus Trichoderma citrinoviride HT-9. Chinese Chemical Letters, 2024, 35(8): 109035-. doi: 10.1016/j.cclet.2023.109035

    13. [13]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    14. [14]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    15. [15]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    16. [16]

      Qi TanRun-Zhu FanWencong YangGe ZouTao ChenJianying WuBo WangSheng YinZhigang She . (+)/(−)-Mycosphatide A, a pair of highly oxidized polyketides with lipid-lowering activity from the mangrove endophytic fungus Mycosphaerella sp. SYSU-DZG01. Chinese Chemical Letters, 2024, 35(9): 109390-. doi: 10.1016/j.cclet.2023.109390

    17. [17]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    18. [18]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

Metrics
  • PDF Downloads(1)
  • Abstract views(157)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return