Citation: Lian ZENG, Yu-He JIANG, Jin-Ting WU, Hong-Bo LI, Jian-Guo ZHANG. Molecular Design and Performance Studies of 4-(1, 2, 4-Triazole-5-yl) Furazan Derivatives as Promising Energetic Materials[J]. Chinese Journal of Structural Chemistry, ;2021, 40(7): 942-948. doi: 10.14102/j.cnki.0254–5861.2011–3061 shu

Molecular Design and Performance Studies of 4-(1, 2, 4-Triazole-5-yl) Furazan Derivatives as Promising Energetic Materials

  • Corresponding author: Jin-Ting WU, wjt1234@163.com Hong-Bo LI, li-honggg@163.com
  • Received Date: 10 December 2020
    Accepted Date: 25 January 2021

    Fund Project: the Opening Project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology) KFJJ20-03MDoctoral Foundation of SWUST 17zx7128Major Special Projects of the Equipment Development Department of the Central Military Commission of China 14021001040305-5

Figures(5)

  • In this paper, eight 4-(1, 2, 4-triazole-5-yl) furazan (TZFZ) derivatives were designed, and the molecular configurations of TZFZ compounds were optimized by using the B3LYP/6-311+G* level. Meanwhile, the detonation performance, density, impact sensitivity, heat of formation and oxygen balance have been investigated. The results clearly and intuitively illustrate that the introduction of -NO2 and coordination oxygen plays a pivotal role in increasing the density and heat of formation. In summary, the properties of these compounds are better than the traditional explosives RDX and TNT, especially the density and detonation pressure. Energetic evaluations showed that compounds B1 (P = 36.73 GPa; D = 8.98 km·s-1, ρ = 1.88 g·cm-3) and B7 (P = 38.51 GPa; D = 9.17 km·s-1, ρ = 1.90 g·cm-3) could be seen as promising candidates of energetic insensitive compounds with remarkable performance.
  • 加载中
    1. [1]

      Yu, Q.; Yang, H. W.; Imler, G. H.; Parrish, D. A.; Cheng, G. B.; Shreeve, J. M. Derivatives of 3, 6-bis(3-aminofurazan-4-ylamino)-1, 2, 4, 5-tetrazine: excellent energetic properties with lower sensitivities. Acs. Appl. Mater. Inter. 2020, 12, 31522−31531.  doi: 10.1021/acsami.0c08526

    2. [2]

      Malow, M.; Wehrstedt, K. D.; Neuenfeld, S. On the explosive properties of 1H-benzotriazole and 1H-1, 2, 3-triazole. Tetrahedron Lett. 2007, 48, 1233−1235.  doi: 10.1016/j.tetlet.2006.12.046

    3. [3]

      Li, X. H.; Zhang, R. Z.; Zhang, X. Z. Theoretical studies on a series of 1, 2, 3-triazoles derivatives as potential high energy density compounds. Struct. Chem. 2011, 22, 577−587.  doi: 10.1007/s11224-011-9734-y

    4. [4]

      Jin, R. Y.; Zeng, C. Y.; Liang, X. H.; Sun, X. H.; Liu, Y. F.; Wang, Y. Y.; Zhou, S. Design, synthesis, biological activities and DFT calculation of novel 1, 2, 4-triazole Schiff base derivatives. Bioorg. Chem. 2018, 80, 253−260.  doi: 10.1016/j.bioorg.2018.06.030

    5. [5]

      Du, L. X. S.; Liu, Y. C.; Cheng, G. M.; Luo, J. Molecular design and property study of xifurza type fused cast explosive. Acta Armamentarii 2018, 39, 46−56.  doi: 10.3969/j.issn.1000-1093.2018.01.005

    6. [6]

      Jin, X. H.; Zhou, J. H.; Hu, B. C. Exploration of high-energy-density materials: computational insight into energetic derivatives based on 1, 2, 4, 5-tetrahydro-1, 2, 4, 5-tetrazine. Chemistryopen 2018, 7, 780−788.  doi: 10.1002/open.201800161

    7. [7]

      Sun, S. Y.; Lu, M. Conjugation in multi-tetrazole derivatives: a new design direction for energetic materials. J. Mol. Model. 2018, 24, 173−182.  doi: 10.1007/s00894-018-3710-z

    8. [8]

      Dalinger, I. L.; Kormanov, A. V.; Suponitsky, K. Y.; Muravyev, N. V.; Sheremetev, A. B. Pyrazole-tetrazole hybrid with trinitromethyl, fluorodinitromethyl, or (difluoroamino) dinitromethyl groups: high-performance energetic materials. Chem. Asian J. 2018, 13, 1165−1172.  doi: 10.1002/asia.201800214

    9. [9]

      Xu, Z.; Cheng, G.; Yang, H.; Zhang, J.; Shreeve, J. N. M. Synthesis and characterization of 4-(1, 2, 4-triazole-5-yl)furazan derivatives as high-performance insensitive energetic materials. Chem. Eur. J. 2018, 24, 10488−10497.  doi: 10.1002/chem.201801597

    10. [10]

      Zhai, L. J.; Wang, B. Z.; Fan, X. Z. Synthesis and property estimation of 3, 3΄-bis (tetrazole-5-yl)-4, 4΄-azotaxime. Chin. J. Explos. Propellants 2016, 41, 21−25.

    11. [11]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision B. 01, Gaussian, Inc., Pittsburgh PA 2003.

    12. [12]

      Politzer, P.; Martinez, J.; Murray, J. S.; Concha, M. C.; Toro-Labbe, A. An electrostatic interaction correction for improved crystal density prediction. Mol. Phys. 2009, 107, 2095−2101.  doi: 10.1080/00268970903156306

    13. [13]

      Politzer, P.; Murray, J. S. Some perspectives on estimating detonation properties of C, H, N, O compounds. Cent. Eur. J. Energ. Mater. 2011, 8, 209−220.

    14. [14]

      Kamlet, M. J.; Ablard, J. E. Chemistry of detonations. II. Buffered equilibria. J. Chem. Phys. 1968, 48, 36−42.  doi: 10.1063/1.1667930

    15. [15]

      Kamlet, M. J.; Dickinson, C. Chemistry of detonations. III. Evaluation of the simplified calculational method for Chapman-Jouguet detonation pressures on the basis of available experimental information. J. Chem. Phys. 1968, 48, 43−50.  doi: 10.1063/1.1667939

    16. [16]

      Kamlet, M. J.; Jacobs, S. J. Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O explosives. J. Chem. Phys. 1968, 48, 23−35.  doi: 10.1063/1.1667908

    17. [17]

      He, P.; Zhang, J. G.; Wu, L.; Wu, J. T.; Zhang, T. L. Computational design and screening of promising energetic materials: novel azobis(tetrazoles) with ten catenated nitrogen atoms chain. J. Phys. Org. Chem. 2016, 30, 36−74.

    18. [18]

      Rice, B. M.; Hare, J. J. A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules. J. Phys. Chem. 2002, 106, 1770−1783.  doi: 10.1021/jp012602q

    19. [19]

      Lu, T.; Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580−592.  doi: 10.1002/jcc.22885

    20. [20]

      Byrd, E. F. C.; Rice, B. M. Improved prediction of heats of formation of energetic materials using quantum mechanical calculations. J. Phys. Chem. 2006, 110, 1005−1013.  doi: 10.1021/jp0536192

    21. [21]

      Joo, Y. H.; Shreeve, J. M. High-density energetic mono-or bis(oxy)-5-nitroiminotetrazoles. Angew. Chem. Int. Ed. 2010, 49, 7320−7323.  doi: 10.1002/anie.201003866

    22. [22]

      Lewczuk, R.; Ksiazek, M.; Katarzyna, G. S.; Katarzyna, C. Azo-linked high-nitrogen energetic materials. J. Mater. Chem. A 2018, 6, 1915−1940.  doi: 10.1039/C7TA09593G

    23. [23]

      Wu, Q.; Zhu, W.; Xiao, H. Molecular design of trinitromethyl-substituted nitrogen-rich heterocycle derivatives with good oxygen balance as high-energy density compounds. Struct. Chem. 2013, 24, 1725−1736.  doi: 10.1007/s11224-013-0217-1

    24. [24]

      Wei, T.; Wu, J.; Zhu, W.; Zhang, C.; Xiao, H. Characterization of nitrogen-bridged 1, 2, 4, 5-tetrazine-furazan-and 1H-tetrazole-based polyheterocyclic compounds: heats of formation, thermal stability, and detonation properties. J. Mol. Model. 2012, 18, 3467−3479.  doi: 10.1007/s00894-012-1357-8

    25. [25]

      Lian, P.; Lai, W. P.; Lu, J.; Liu, Y. Z.; Wei, T.; Wang, B. Z. Study on density functional theory of trifurozan oxyheterocyclic hepttriene. Comput. Appl. Chem. 2016, 33, 910−914.

    26. [26]

      Ghule, V. D. Computational studies on the triazole-based high energy materials. Comput. Theor. Chem. 2012, 992, 92−96.  doi: 10.1016/j.comptc.2012.05.007

    27. [27]

      Li, J. A multivariate relationship for the impact sensitivities of energetic N-nitrocompounds based on bond dissociation energy. J. Hazard. Mater. 2010, 174, 728−733.  doi: 10.1016/j.jhazmat.2009.09.111

    28. [28]

      Zhang, C. Y. Review of the establishment of nitro group charge method and its applications. J. Hazard. Mater. 2009, 161, 21−28.  doi: 10.1016/j.jhazmat.2008.04.001

  • 加载中
    1. [1]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    4. [4]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    5. [5]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    6. [6]

      Qingyun HuWei WangJunyuan LuHe ZhuQi LiuYang RenHong WangJian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344

    7. [7]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    8. [8]

      Longsheng ZhanYuchao WangMengjie LiuXin ZhaoDanni DengXinran ZhengJiabi JiangXiang XiongYongpeng Lei . BiVO4 as a precatalyst for CO2 electroreduction to formate at large current density. Chinese Chemical Letters, 2025, 36(3): 109695-. doi: 10.1016/j.cclet.2024.109695

    9. [9]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    10. [10]

      Zhe WangLi-Peng HouQian-Kui ZhangNan YaoAibing ChenJia-Qi HuangXue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570

    11. [11]

      Rui WangYuan TianXuefeng GaoLei Jiang . Design and fabrication of triangle-pattern superwettability hybrid surface with high-efficiency condensation heat transfer performance. Chinese Chemical Letters, 2025, 36(3): 110395-. doi: 10.1016/j.cclet.2024.110395

    12. [12]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    13. [13]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    14. [14]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    15. [15]

      Guiyang ZhengXuelian KangHaoran YeWei FanChristian SonneSu Shiung LamRock Keey LiewChanglei XiaYang ShiShengbo Ge . Recent advances in functional utilisation of environmentally friendly and recyclable high-performance green biocomposites: A review. Chinese Chemical Letters, 2024, 35(4): 108817-. doi: 10.1016/j.cclet.2023.108817

    16. [16]

      Huanyan LiuJiajun LongHua YuShichao ZhangWenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712

    17. [17]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    18. [18]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    19. [19]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    20. [20]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

Metrics
  • PDF Downloads(2)
  • Abstract views(304)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return