Citation: Sheng-Ze YUAN, Kui XIE. Enhanced Oxidative Coupling of Methane with Oxygen Permeation Membrane[J]. Chinese Journal of Structural Chemistry, ;2020, 39(12): 2115-2122. doi: 10.14102/j.cnki.0254–5861.2011–3025 shu

Enhanced Oxidative Coupling of Methane with Oxygen Permeation Membrane

  • Corresponding author: Kui XIE, kxie@fjirsm.ac.cn
  • Received Date: 3 November 2020
    Accepted Date: 13 November 2020

    Fund Project: the National Key Research and Development Program of China 2017YFA0700102National Natural Science Foundation of China 91845202Dalian National Laboratory for Clean Energy DNL180404Strategic Priority Research Program of Chinese Academy of Sciences XDB2000000

Figures(5)

  • Oxidative coupling of methane to ethylene is of high importance to the future of light olefin industry. However, the carbon atom efficiency is normally below 50% in gas phase reaction which is limited to the overoxidation of methane to carbon dioxide with oxidants. Here we present an alternative approach of electrochemical oxidation of methane in an oxygen permeation membrane reactor and show the highest conversion of methane and C2 selectivity of 28% and 40.2% at 1150 ℃, respectively. We prepare the 100-μm-thick perovskite (La0.8Sr0.2)1-xCr0.5Fe0.5O3-δ (LSCrF) dense membrane supported on the 500-μm-thick porous (La0.8Sr0.2)1-xCr0.5Fe0.5O3-δ (LSCrF–Fe) (x = 0, 0.02, 0.05 and 0.10) scaffolds while the excess of Fe would be exsolved on porous skeleton to create metal-oxide interfaces toward methane oxidation. The metal-oxide interfaces not only facilitate the activation of C–H bond in methane but also enhance the coking resistance.
  • 加载中
    1. [1]

      Diercks, R.; Arndt, J. D.; Freyer, S.; Geier, R.; Machhammer, O.; Schwartze, J.; Volland, M. Raw material changes in the chemical industry. Chem. Eng. Technol. 2008, 31, 631−637.  doi: 10.1002/ceat.200800061

    2. [2]

      Lu, J. Z.; Yang, L. J.; Xu, B. L.; Wu, Q.; Zhang, D.; Yuan, S. J.; Zhai, Y.; Wang, X. Z.; Fan, Y. N.; Hu, Z. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer-Tropsch catalysts for lower olefins. Acs Catal. 2014, 4, 613−621.  doi: 10.1021/cs400931z

    3. [3]

      Cheng, K.; Gu, B.; Liu, X. L.; Kang, J. C.; Zhang, Q. H.; Wang, Y. Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling. Angew. Chem. Int. Ed. 2016, 55, 4725−4728.  doi: 10.1002/anie.201601208

    4. [4]

      Zhong, L.; Yu, F.; An, Y.; Zhao, Y.; Sun, Y. H.; Li, Z. J.; Lin, T. J.; Lin, Y. J.; Qi, X. Z.; Dai, Y. Y.; Gu, L.; Hu, J. S.; Jin, S. F.; Shen, Q.; Wang, H. Cobalt carbide nanoprisms for direct production of lower olefins from syngas. Nature 2016, 538, 84−87.  doi: 10.1038/nature19786

    5. [5]

      Torres Galvis, H. M.; De Jong, K. P. Catalysts for production of lower olefins from synthesis gas: a review. Acs Catal. 2013, 3, 2130−2149.  doi: 10.1021/cs4003436

    6. [6]

      Jiao, F.; Pan, X. L.; Gong, K.; Chen, Y. X.; Li, G.; Bao, X. H. Shape-selective zeolites promote ethylene formation from syngas via a ketene intermediate. Angew. Chem. Int. Ed. 2018, 57, 4692−4696.  doi: 10.1002/anie.201801397

    7. [7]

      Jiao, F.; Li, J. J.; Pan, X. L.; Xiao, J. P.; Li, H. B.; Ma, H.; Wei, M. M.; Pan, Y.; Zhou, Z. Y.; Li, M. R.; Miao, S.; Li, J.; Zhu, Y. F.; Xiao, D.; He, T.; Yang, J. H.; Qi, F.; Fu, Q.; Bao, X. H. Selective conversion of syngas to light olefins. Science 2016, 351, 1065−1068.  doi: 10.1126/science.aaf1835

    8. [8]

      Cheng, K.; Ordomsky, V. V.; Virginie, M.; Legras, B.; Chernavskii, P. A.; Kazak, V. O.; Cordier, C.; Paul, S.; Wang, Y.; Khodakov, A. Y. Support effects in high temperature Fischer-Tropsch synthesis on iron catalysts. Appl. Catal. A 2014, 488, 66−77.  doi: 10.1016/j.apcata.2014.09.033

    9. [9]

      Saheli, S.; Rezvani, A. R.; Arabshahi, A.; Dusek, M.; Samolova, E.; Jarosova, M. Synthesis new Co–Mn mixed oxide catalyst for the production of light olefins by tuning the catalyst structure. Appl. Organomet. Chem. 2020, e6038, 1−11.

    10. [10]

      Olsbye, U.; Svelle, S.; Bjorgen, M.; Beato, P.; Janssens, T. V. W.; Joensen, F.; Bordiga, S.; Lillerud, K. P. Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angew. Chem. Int. Ed. 2012, 51, 5810−5831.  doi: 10.1002/anie.201103657

    11. [11]

      Zhu, Y. F.; Pan, X. L.; Jiao, F.; Li, J.; Yang, J. H.; Ding, M. Z.; Han, Y.; Liu, Z.; Bao, X. H. Role of manganese oxide in syngas conversion to light olefins. Acs Catal. 2017, 7, 2800−2804.  doi: 10.1021/acscatal.7b00221

    12. [12]

      Noon, D.; Seubsai, A.; Senkan, S. Oxidative coupling of methane by nanofiber catalysts. ChemCatChem. 2013, 5, 146−149.  doi: 10.1002/cctc.201200408

    13. [13]

      Schwach, P.; Pan, X. L.; Bao, X. H. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects. Chem. Rev. 2017, 117, 8497−8520.  doi: 10.1021/acs.chemrev.6b00715

    14. [14]

      Choudhary, V. R.; Chaudari, S. T.; Rajput, A. M.; Rane, V. H. Beneficial effect of oxygen distribution on methane conversion and C2+ selectivity in oxidative coupling of methane to C2+ hydrocarbons overlanthanum-promoted magnesium oxide. J. Chem. Soc., Chem. Commun. 1989, 20, 1526−1527.

    15. [15]

      Jašo, S.; Arellano-Garcia, H.; Wozny, G. Oxidative coupling of methane in a fluidized bed reactor: influence of feeding policy, hydrodynamics, and reactor geometry. Chem. Eng. J. 2011, 171, 255−271.  doi: 10.1016/j.cej.2011.03.077

    16. [16]

      Rebeilleau-Dassonneville, M.; Rosini, S.; Veen, A. C. V.; Farrusseng, D.; Mirodatos, C. Oxidative activation of ethane on catalytic modified dense ionic oxygen conducting membranes. Catal. Today 2005, 104, 131−137.  doi: 10.1016/j.cattod.2005.03.071

    17. [17]

      Akin, F. T.; Lin, Y. S. Selective oxidation of ethane to ethylene in a dense tubular membrane reactor. J. Membr. Sci. 2002, 209, 457−467.  doi: 10.1016/S0376-7388(02)00363-0

    18. [18]

      Wang, H. H.; Cong, Y.; Yang, W. S. Continuous oxygen ion transfer medium as a catalyst for high selective oxidative dehydrogenation of ethane. Catal. Lett. 2002, 84, 101−106.  doi: 10.1023/A:1021088904379

    19. [19]

      Wang, H. H.; Tablet, C.; Schiestel, T.; Caro, J. Hollow fiber membrane reactors for the oxidative activation of ethane. Catal. Today 2006, 118, 98−103.  doi: 10.1016/j.cattod.2005.11.093

    20. [20]

      Zhang, C.; Sunarso, J.; Liu, S. M. Designing CO2-resistant oxygen-selective mixed ionic-electronic conducting membranes: guidelines, recent advances, and forward directions. Chem. Soc. Rev. 2017, 46, 2941−3005.  doi: 10.1039/C6CS00841K

    21. [21]

      Teraoka, Y.; Honbe, Y.; Ishii, J.; Furukawa, H.; Moriguchi, I. Catalytic effects in oxygen permeation through mixed-conductive LSCF perovskite membranes. Solid State Ionics 2002, 152−153, 681−687.

    22. [22]

      Shao, Z. P.; Yang, W. S.; Cong, Y.; Dong, H.; Tong, J. H.; Xiong, G. X. Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen membrane. J. Membr. Sci. 2000, 172, 177−183.  doi: 10.1016/S0376-7388(00)00337-9

    23. [23]

      Gellings, P. J.; Bouwmeester, H. J. M. Ion and mixed conducting oxides as catalysts. Catal. Today 1992, 12, 1−105  doi: 10.1016/0920-5861(92)80046-P

    24. [24]

      Nakamura, T.; Petzow, G.; Gauckler, L. J. Stability of the perovskite phase LaBO3 (B = V, Cr, Mn, Fe, Co, Ni) in reducing atmosphere. Mater. Res. Bull. 1979, 14, 649−659.  doi: 10.1016/0025-5408(79)90048-5

    25. [25]

      Tao, S. W.; Irvine, J. T. S. Catalytic properties of the perovskite pxide La0.75Sr0.25Cr0.5Fe0.5O3-δ in relation to its potential as a solid oxide fuel cell anode material. Chem. Mater. 2004, 16, 4116−4121.  doi: 10.1021/cm049341s

    26. [26]

      Yang, F.; Deng, D. H.; Pan, X. L.; Fu, Q.; Bao, X. H. Understanding nano effects in catalysis. Natl. Sci. Rev. 2015, 2, 183−201.  doi: 10.1093/nsr/nwv024

    27. [27]

      Neagu, D.; Tsekouras, G.; Miller, D. N.; Menard, H.; Irvine, J. T. S. In situ growth of nanoparticles through control of non-stoichiometry. Nat. Chem. 2013, 5, 1−8.  doi: 10.1038/nchem.1530

    28. [28]

      Irvine, J. T. S.; Neagu, D.; Verbraeken, M. C.; Chatzichristodoulou, C.; Graves, C.; Mogensen, M. B. Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers. Nat. Energy 2016, 1, 1−13.

    29. [29]

      Shao, Z. P.; Xiong, G. X.; Dong, H.; Yang, W. S.; Lin, L. W. Synthesis, oxygen permeation study and membrane performance of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen-permeable dense ceramic reactor for partial oxidation of methane to syngas. Sep. Purif. Technol. 2001, 25, 97−116.  doi: 10.1016/S1383-5866(01)00095-8

    30. [30]

      Kusaba, H.; Shibata, Y.; Sasaki, K.; Teraoka, Y. Surface effect on oxygen permeation through dense membrane of mixed-conductive LSCF perovskite-type oxide. Solid State Ionics 2006, 177, 2249−2253.  doi: 10.1016/j.ssi.2006.05.038

  • 加载中
    1. [1]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    2. [2]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    3. [3]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    4. [4]

      Jisheng LiuJunli ChenXifeng ZhangYin WuXin QiJie WangXiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779

    5. [5]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    6. [6]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    7. [7]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    8. [8]

      Zhi LiWenpei LiShaoping JiangChuan HuYuanyu HuangMaxim ShevtsovHuile GaoShaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150

    9. [9]

      Feng CuiFangman ChenXiaochun XieChenyang GuoKai XiaoZiping WuYinglu ChenJunna LuFeixia RuanChuanxu ChengChao YangDan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681

    10. [10]

      Bohan ChenLiming GongJing FengMingji JinLiqing ChenZhonggao GaoWei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432

    11. [11]

      Tinghui Yang Min Kuang Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350

    12. [12]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    13. [13]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    14. [14]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    15. [15]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    16. [16]

      Yiran TaoChunlei DaiZhaoxiang XieXinru YouKaiwen LiJun WuHai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170

    17. [17]

      Xiangqian CaoChenkai YangXiaodong ZhuMengxin ZhaoYilin YanZhengnan HuangJinming CaiJingming ZhuangShengzhou LiWei LiBing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199

    18. [18]

      Yifei ZhangYuncong XueLaiwei GaoRui LiaoFeng WangFei Wang . Merging non-covalent and covalent crosslinking: En route to single chain nanoparticles. Chinese Chemical Letters, 2024, 35(6): 109217-. doi: 10.1016/j.cclet.2023.109217

    19. [19]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    20. [20]

      Lu LiSuticha ChuntaXianzi ZhengHaisheng HeWei WuYi Luβ-Lactoglobulin stabilized lipid nanoparticles enhance oral absorption of insulin by slowing down lipolysis. Chinese Chemical Letters, 2024, 35(4): 108662-. doi: 10.1016/j.cclet.2023.108662

Metrics
  • PDF Downloads(4)
  • Abstract views(219)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return