Citation: Bin TAN, Jian-Ce JIN, Zhao-Feng WU, Xiao-Ying HUANG. Magnesium Based Coordination Polymers: Synthesis, Structures and Fluorescence Properties[J]. Chinese Journal of Structural Chemistry, ;2020, 39(12): 2102-2114. doi: 10.14102/j.cnki.0254–5861.2011–3022 shu

Magnesium Based Coordination Polymers: Synthesis, Structures and Fluorescence Properties

  • Corresponding author: Zhao-Feng WU, zfwu@fjirsm.ac.cn Xiao-Ying HUANG, xyhuang@fjirsm.ac.cn
  • Received Date: 2 November 2020
    Accepted Date: 23 November 2020

    Fund Project: the NSF of Fujian Province 2018J05033

Figures(13)

  • As one important member of main group metals, magnesium (Mg) takes great parts in fields involving biology, medicine, industry, and some others. Because of the unique characteristics including but not limited to low-cost, non-toxic and light-weight, Mg-based coordination polymers (CPs) with good performances such as gas storage and separation, catalysis and fluorescence have received certain attention in recent years. However, compared with the well-studied transition metal and rare earth metal based CPs, the report on Mg-CPs is relatively scarce. In this review we briefly summarize the synthesis, structural features, and fluorescent (FL) properties of Mg-CPs on the basis of recent related advances made in our lab. The chemical sensing, white emitting, and mechanoresponsive photoluminescence of selected FL-Mg-CPs are emphasized.
  • 加载中
    1. [1]

      Murray, L. J.; Dincă, M.; Long, J. R. Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1294–1314.  doi: 10.1039/b802256a

    2. [2]

      Cui, Y. J.; Yue, Y. F.; Qian, G. D.; Chen, B. L. Luminescent functional metal-organic frameworks. Chem. Rev. 2012, 112, 1126–1162.  doi: 10.1021/cr200101d

    3. [3]

      Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Ferey, G.; Morris, R. E.; Serre, C. Metal-organic frameworks in biomedicine. Chem. Rev. 2012, 112, 1232–1268.  doi: 10.1021/cr200256v

    4. [4]

      Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Metal-organic framework materials as chemical sensors. Chem. Rev. 2012, 112, 1105–1125.  doi: 10.1021/cr200324t

    5. [5]

      Liu, J.; Thallapally, P. K.; McGrail, B. P.; Brown, D. R. Progress in adsorption-based CO2 capture by metal-organic frameworks. Chem. Soc. Rev. 2012, 41, 2308–2322.  doi: 10.1039/C1CS15221A

    6. [6]

      Makal, T. A.; Li, J. R.; Lu, W. G.; Zhou, H. C. Methane storage in advanced porous materials. Chem. Soc. Rev. 2012, 41, 7761–7779.  doi: 10.1039/c2cs35251f

    7. [7]

      Wang, L.; Han, Y. Z.; Feng, X.; Zhou, J. W.; Qi, P. F.; Wang, B. Metal-organic frameworks for energy storage: batteries and supercapacitors. Coord. Chem. Rev. 2016, 307, 361–381.  doi: 10.1016/j.ccr.2015.09.002

    8. [8]

      Pan, M.; Wei, Z. W.; Xu, Y. W.; Su, C. Y. Coordination assembly of metal-organic materials. Prog. Chem. 2017, 29, 47–74.

    9. [9]

      Rogge, S. M. J.; Bavykina, A.; Hajek, J.; Garcia, H.; Olivos-Suarez, A. I.; Sepulveda-Escribano, A.; Vimont, A.; Clet, G.; Bazin, P.; Kapteijn, F.; Daturi, M.; Ramos-Fernandez, E. V.; Llabres, I.; Xamena, F. X.; Van Speybroeck, V.; Gascon, J. Metal-organic and covalent organic frameworks as single-site catalysts. Chem. Soc. Rev. 2017, 46, 3134–3184.  doi: 10.1039/C7CS00033B

    10. [10]

      Lim, D. W.; Kitagawa, H. Proton transport in metal-organic frameworks. Chem. Rev. 2020, 120, 8416–8467.  doi: 10.1021/acs.chemrev.9b00842

    11. [11]

      Rocha, J.; Carlos, L. D.; Paz, F. A. A.; Ananias, D. Luminescent multifunctional lanthanides-based metal-organic frameworks. Chem. Soc. Rev. 2011, 40, 926–940.  doi: 10.1039/C0CS00130A

    12. [12]

      Zhang, L. L.; Kang, Z. X.; Xin, X. L.; Sun, D. F. Metal-organic frameworks based luminescent materials for nitroaromatics sensing. CrystEngComm. 2016, 18, 193–206.  doi: 10.1039/C5CE01917F

    13. [13]

      Calvez, G.; Le Natur, F.; Daiguebonne, C.; Bernot, K.; Suffren, Y.; Guillou, O. Lanthanide-based hexa-nuclear complexes and their use as molecular precursors. Coord. Chem. Rev. 2017, 340, 134–153.  doi: 10.1016/j.ccr.2016.12.004

    14. [14]

      Wu, S. Y.; Min, H.; Shi, W.; Cheng, P. Multicenter metal-organic framework-based ratiometric fluorescent sensors. Adv. Mater. 2020, 32, 1805871.  doi: 10.1002/adma.201805871

    15. [15]

      Yin, H. Q.; Yin, X. B. Metal-organic frameworks with multiple luminescence emissions: designs and applications. Acc. Chem. Res. 2020, 53, 485–495.  doi: 10.1021/acs.accounts.9b00575

    16. [16]

      Jeon, K. J.; Moon, H. R.; Ruminski, A. M.; Jiang, B.; Kisielowski, C.; Bardhan, R.; Urban, J. J. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nat. Mater. 2011, 10, 286–290.  doi: 10.1038/nmat2978

    17. [17]

      Hornberger, H.; Virtanen, S.; Boccaccini, A. R. Biomedical coatings on magnesium alloys - a review. Acta Biomater. 2012, 8, 2442–2455.  doi: 10.1016/j.actbio.2012.04.012

    18. [18]

      Kirkland, N. T.; Birbilis, N.; Staiger, M. P. Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations. Acta Biomater. 2012, 8, 925–936.  doi: 10.1016/j.actbio.2011.11.014

    19. [19]

      Muldoon, J.; Bucur, C. B.; Gregory, T. Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem. Rev. 2014, 114, 11683–11720.  doi: 10.1021/cr500049y

    20. [20]

      Atrens, A.; Song, G. L.; Liu, M.; Shi, Z. M.; Cao, F. Y.; Dargusch, M. S. Review of recent developments in the field of magnesium corrosion. Adv. Eng. Mater. 2015, 17, 400–453.  doi: 10.1002/adem.201400434

    21. [21]

      de Baaij, J. H. F.; Hoenderop, J. G. J.; Bindels, R. J. M. Magnesium in man: Implications for health and disease. Physiol Rev. 2015, 95, 1–46.  doi: 10.1152/physrev.00012.2014

    22. [22]

      Lim, D. W.; Yoon, J. W.; Ryu, K. Y.; Suh, M. P. Magnesium nanocrystals embedded in a metal-organic framework: hybrid hydrogen storage with synergistic effect on physi- and chemisorption. Angew. Chem. Int. Ed. 2012, 51, 9814–9817.  doi: 10.1002/anie.201206055

    23. [23]

      Jia, Y.; Sun, C. H.; Shen, S. H.; Zou, J.; Mao, S. S.; Yao, X. D. Combination of nanosizing and interfacial effect: future perspective for designing Mg-based nanomaterials for hydrogen storage. Renew Sust. Energ Rev. 2015, 44, 289–303.  doi: 10.1016/j.rser.2014.12.032

    24. [24]

      Wang, H.; Lin, H. J.; Cai, W. T.; Ouyang, L. Z.; Zhu, M. Tuning kinetics and thermodynamics of hydrogen storage in light metal element based systems - a review of recent progress. J. Alloy. Compd. 2016, 658, 280–300.  doi: 10.1016/j.jallcom.2015.10.090

    25. [25]

      Sadhasivam, T.; Kim, H. T.; Jung, S.; Roh, S. H.; Park, J. H.; Jung, H. Y. Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: a review. Renew Sust. Energ Rev. 2017, 72, 523–534.  doi: 10.1016/j.rser.2017.01.107

    26. [26]

      Shadanbaz, S.; Dias, G. J. Calcium phosphate coatings on magnesium alloys for biomedical applications: a review. Acta Biomater. 2012, 8, 20–30.  doi: 10.1016/j.actbio.2011.10.016

    27. [27]

      Wu, Z. F.; Tan, B.; Lustig, W. P.; Velasco, E.; Wang, H.; Huang, X. Y.; Li, J. Magnesium based coordination polymers: syntheses, structures, properties and applications. Coord. Chem. Rev. 2019, 399, 213025.  doi: 10.1016/j.ccr.2019.213025

    28. [28]

      Sun, Y. J.; Zhou, H. C. Recent progress in the synthesis of metal-organic frameworks. Sci. Technol. Adv. Mater. 2015, 16, 054202.  doi: 10.1088/1468-6996/16/5/054202

    29. [29]

      Howarth, A. J.; Peters, A. W.; Vermeulen, N. A.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Best practices for the synthesis, activation, and characterization of metal-organic frameworks. Chem. Mater. 2017, 29, 26–39.  doi: 10.1021/acs.chemmater.6b02626

    30. [30]

      Mazaj, M.; Celic, T. B.; Mali, G.; Rangus, M.; Kaucic, V.; Logar, N. Z. Control of the crystallization process and structure dimensionality of Mg-benzene-1, 3, 5-tricarboxylates by tuning solvent composition. Cryst. Growth Des. 2013, 13, 3825–3834.  doi: 10.1021/cg400929z

    31. [31]

      Wu, Z. F.; Hu, B.; Feng, M. L.; Huang, X. Y.; Zhao, Y. B. Ionothermal synthesis and crystal structure of a magnesium metal-organic framework. Inorg. Chem. Commun. 2011, 14, 1132–1135.  doi: 10.1016/j.inoche.2011.04.006

    32. [32]

      Wu, Z. F.; Feng, M. L.; Hu, B.; Tan, B.; Huang, X. Y. Ionothermal synthesis of a metal-organic framework constructed by magnesium(Ⅱ) and 4, 4΄-oxybis(benzoic acid) ligand. Inorg. Chem. Commun. 2012, 24, 166–169.  doi: 10.1016/j.inoche.2012.06.024

    33. [33]

      Wu, Z. F.; Tan, B.; Du, C. F.; Feng, M. L.; Xie, Z. L.; Huang, X. Y. An ionothermally synthesized Mg-based coordination polymer as a precursor for preparing porous carbons. CrystEngComm. 2015, 17, 4288–4292.  doi: 10.1039/C5CE00591D

    34. [34]

      Rosi, N. L.; Kim, J.; Eddaoudi, M.; Chen, B. L.; O'Keeffe, M.; Yaghi, O. M. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J. Am. Chem. Soc. 2005, 127, 1504–1518.  doi: 10.1021/ja045123o

    35. [35]

      Tranchemontagne, D. J.; Mendoza-Cortes, J. L.; O'Keeffe, M.; Yaghi, O. M. Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1257–1283.  doi: 10.1039/b817735j

    36. [36]

      Song, Y.; Feng, M. L.; Wu, Z. F.; Huang, X. Y. Solvent-assisted construction of diverse Mg-TDC coordination polymers. CrystEngComm. 2015, 17, 1348–1357.  doi: 10.1039/C4CE02288B

    37. [37]

      Rood, J. A.; Noll, B. C.; Henderson, K. W. Synthesis, structural characterization, gas sorption and guest-exchange studies of the lightweight, porous metal-organic framework alpha-[Mg3(O2CH)6]. Inorg. Chem. 2006, 45, 5521–5528.  doi: 10.1021/ic060543v

    38. [38]

      Davies, R. P.; Less, R. J.; Lickiss, P. D.; White, A. J. P. Framework materials assembled from magnesium carboxylate building units. Dalton Trans. 2007, 2528–2535.

    39. [39]

      Quinque, G. T.; Oliver, A. G.; Rood, J. A. Synthesis and structural characterization of bis(salicylaldiminato)magnesium complexes of varying aggregation and coordination state. Eur. J. Inorg. Chem. 2011, 3321–3326.

    40. [40]

      Song, L. F.; Jiao, C. L.; Jiang, C. H.; Zhang, J. A.; Sun, L. X.; Xu, F.; Jiao, Q. Z.; Xing, Y. H.; Huang, F. L.; Du, Y.; Cao, Z.; Li, F.; Zhao, J. J. Heat capacities and thermodynamic properties of MgNDC. J. Therm. Anal. Calorim. 2011, 103, 365–372.  doi: 10.1007/s10973-010-0777-x

    41. [41]

      Zhang, X.; Huang, Y. Y.; Cheng, J. K.; Yao, Y. G.; Zhang, J.; Wang, F. Alkaline earth metal ion doped Zn(Ⅱ)-terephthalates. CrystEngComm. 2012, 14, 4843–4849.  doi: 10.1039/c2ce25440a

    42. [42]

      Dincă, M.; Long, J. R. Strong H-2 binding and selective gas adsorption within the microporous coordination solid Mg3(O2C-C10H6-CO2)3. J. Am. Chem. Soc. 2005, 127, 9376–9377.  doi: 10.1021/ja0523082

    43. [43]

      Zhai, Q. G.; Lin, Q. P.; Wu, T.; Zheng, S. T.; Bu, X. H.; Feng, P. Y. Induction of trimeric [Mg3(OH)(CO2)6] in a porous framework by a desymmetrized tritopic ligand. Dalton Trans. 2012, 41, 2866–2868.  doi: 10.1039/c2dt12215d

    44. [44]

      Zhai, Q. G.; Bu, X.; Zhao, X.; Mao, C.; Bu, F.; Chen, X.; Feng, P. Advancing magnesium-organic porous materials through new magnesium cluster chemistry. Cryst. Growth Des. 2016, 16, 1261–1267.  doi: 10.1021/acs.cgd.5b01297

    45. [45]

      Volkringer, C.; Loiseau, T.; Marrot, J.; Ferey, G. A MOF-type magnesium benzene-1, 3, 5-tribenzoate with two-fold interpenetrated ReO3 nets. CrystEngComm. 2009, 11, 58–60.  doi: 10.1039/B814943G

    46. [46]

      Bohnsack, A. M.; Ibarra, I. A.; Hatfield, P. W.; Yoon, J. W.; Hwang, Y. K.; Chang, J. S.; Humphrey, S. M. High capacity CO2 adsorption in a Mg(Ⅱ)-based phosphine oxide coordination material. Chem. Commun. 2011, 47, 4899–4901.  doi: 10.1039/c1cc10754b

    47. [47]

      Calderone, P. J.; Banerjee, D.; Plonka, A. M.; Kim, S. J.; Parise, J. B. Temperature dependent structure formation and photoluminescence studies of a series of magnesium-based coordination networks. Inorg. Chim. Acta 2013, 394, 452–458.  doi: 10.1016/j.ica.2012.08.033

    48. [48]

      Han, L.; Qin, L.; Yan, X. Z.; Xu, L. P.; Sun, J. L.; Yu, L.; Chen, H. B.; Zou, X. D. Two isomeric magnesiummetal-organic frameworks with [24-MC-6] metallacrown cluster. Cryst. Growth Des. 2013, 13, 1807–1811.  doi: 10.1021/cg4000318

    49. [49]

      Caskey, S. R.; Wong-Foy, A. G.; Matzger, A. J. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J. Am. Chem. Soc. 2008, 130, 10870–10871.  doi: 10.1021/ja8036096

    50. [50]

      Britt, D.; Furukawa, H.; Wang, B.; Glover, T. G.; Yaghi, O. M. Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. P. Natl. Acad. Sci. USA 2009, 106, 20637–20640.  doi: 10.1073/pnas.0909718106

    51. [51]

      Glover, T. G.; Peterson, G. W.; Schindler, B. J.; Britt, D.; Yaghi, O. MOF-74 building unit has a direct impact on toxic gas adsorption. Chem. Eng. Sci. 2011, 66, 163–170.  doi: 10.1016/j.ces.2010.10.002

    52. [52]

      Lin, Q. P.; Wu, T.; Zheng, S. T.; Bu, X. H.; Feng, P. Y. A chiral tetragonal magnesium-carboxylate framework with nanotubular channels. Chem. Commun. 2011, 47, 11852–11854.  doi: 10.1039/c1cc14836b

    53. [53]

      Deng, H. X.; Grunder, S.; Cordova, K. E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gandara, F.; Whalley, A. C.; Liu, Z.; Asahina, S.; Kazumori, H.; O'Keeffe, M.; Terasaki, O.; Stoddart, J. F.; Yaghi, O. M. Large-pore apertures in a series of metal-organic frameworks. Science 2012, 336, 1018–1023.  doi: 10.1126/science.1220131

    54. [54]

      Wu, Z. F.; Feng, M. L.; Hu, B.; Huang, X. Y.; Zhao, Y. B. Synthesis and crystal structure of a magnesium metal-organic framework. Chin. J. Struct. Chem. 2011, 30, 1585–1590.

    55. [55]

      Wu, Z. F.; Tan, B.; Feng, M. L.; Lan, A. J.; Huang, X. Y. A magnesium MOF as a sensitive fluorescence sensor for CS2 and nitroaromatic compounds. J. Mater. Chem. A 2014, 2, 6426–6431.  doi: 10.1039/C3TA15071B

    56. [56]

      Wu, Z. F.; Tan, B.; Feng, M. L.; Du, C. F.; Huang, X. Y. A magnesium-carboxylate framework showing luminescent sensing for CS2 and nitroaromatic compounds. J. Solid State Chem. 2015, 223, 59–64.  doi: 10.1016/j.jssc.2014.06.018

    57. [57]

      Wu, Z. F.; Tan, B.; Wang, J. Y.; Du, C. F.; Deng, Z. H.; Huang, X. Y. Tunable photoluminescence and direct white-light emission in Mg-based coordination networks. Chem. Commun. 2015, 51, 157–160.  doi: 10.1039/C4CC07634F

    58. [58]

      Wu, Z. F.; Tan, B.; Xie, Z. L.; Fu, J. J.; Huang, X. Y. A photochromic dual-functional Mg-CP exhibits white-emission after modification with CuI. J. Mater. Chem. C 2016, 4, 2438–2441.  doi: 10.1039/C6TC00244G

    59. [59]

      Wu, Z. F.; Tan, B.; Deng, Z. H.; Xie, Z. L.; Fu, J. J.; Shen, N. N.; Huang, X. Y. Dual-emission luminescence of magnesium coordination polymers based on mixed organic ligands. Chem. Eur. J. 2016, 22, 1334–1339.  doi: 10.1002/chem.201503877

    60. [60]

      Wu, Z. F.; Huang, X. Y. A series of Mg-Zn heterometallic coordination polymers: synthesis, characterization, and fluorescence sensing for Fe3+, CS2, and nitroaromatic compounds. Dalton Trans. 2017, 46, 12597–12604.  doi: 10.1039/C7DT02800H

    61. [61]

      Gong, L. K.; Song, Y.; Shen, N. N.; Zhang, B.; Wu, Z. F.; Huang, X. Y. A fluorescent magnesium-based metal-organic framework with a sensitive sensing property for carbon disulfide. Chin. J. Appl. Chem. 2017, 34, 1059–1065.

    62. [62]

      Wu, Z. F.; Gong, L. K.; Huang, X. Y. A Mg-CP with in situ encapsulated photochromic guest as sensitive fluorescence sensor for Fe3+/Cr3+ ions and nitro-explosives. Inorg. Chem. 2017, 56, 7397–7403.  doi: 10.1021/acs.inorgchem.7b00505

    63. [63]

      Wu, Z. F.; Tan, B.; Gong, L. K.; Zhang, X.; Wang, H.; Fang, Y.; Hei, X. Z.; Zhang, Z. Z.; Zhang, G. Y.; Huang, X. Y.; Li, J. A CuI modified Mg-coordination polymer as a ratiometric fluorescent probe for toxic thiol molecules. J. Mater. Chem. C 2018, 6, 13367–13374.  doi: 10.1039/C8TC04626C

    64. [64]

      Hu, Z.; Deibert, B. J.; Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815–5840.  doi: 10.1039/C4CS00010B

    65. [65]

      Zhang, Y. H.; Li, X.; Song, S. White light emission based on a single component Sm(Ⅲ) framework and a two component Eu(Ⅲ)-doped Gd(Ⅲ) framework constructed from 2, 2΄-diphenyl dicarboxylate and 1H-imidazo[4, 5-f][1, 10]-phenanthroline. Chem. Commun. 2013, 49, 10397–10399.  doi: 10.1039/C3CC46397D

    66. [66]

      Wu, Z. F.; Huang, X. Y. A mechanoresponsive fluorescent Mg-Zn bimetallic MOF with luminescent sensing properties. ChemistrySelect. 2018, 3, 4884–4888.  doi: 10.1002/slct.201800580

    67. [67]

      Wu, Z. F.; Tan, B.; Ma, W.; Xiong, W. W.; Xie, Z. L.; Huang, X. Y. Mg2+ incorporated Co-based MOF precursors for hierarchical CNT-containing porous carbons with ORR activity. Dalton Trans. 2018, 47, 2810–2819.  doi: 10.1039/C7DT04354F

    68. [68]

      Zhao, S. S.; Chen, L.; Wang, L.; Xie, Z. G. Two tetraphenylethene-containing coordination polymers for reversible mechanochromism. Chem. Commun. 2017, 53, 7048–7051.  doi: 10.1039/C7CC02139A

  • 加载中
    1. [1]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    2. [2]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    3. [3]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    4. [4]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    5. [5]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    6. [6]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    7. [7]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    8. [8]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    9. [9]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    10. [10]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    11. [11]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    12. [12]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    13. [13]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    14. [14]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

    15. [15]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    16. [16]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    17. [17]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    18. [18]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    19. [19]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    20. [20]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

Metrics
  • PDF Downloads(1)
  • Abstract views(173)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return