Citation: Yu-Miao SU, Ting WANG, Yu-Lin DING, Jia-Jing HUANG, Wen-Mu LI. Preparation Technology of Solvent-free Polyurethane: A Mini-Review[J]. Chinese Journal of Structural Chemistry, ;2020, 39(12): 2057-2067. doi: 10.14102/j.cnki.0254–5861.2011–3020 shu

Preparation Technology of Solvent-free Polyurethane: A Mini-Review

  • Corresponding author: Wen-Mu LI, liwm@fjirsm.ac.cn
  • & These authors contributed equally to this work
  • Received Date: 2 November 2020
    Accepted Date: 19 November 2020

    Fund Project: the Fujian STS plan supporting project 2019T3005the Fujian STS plan supporting project 2019T3014the Fujian STS plan supporting project 2019T3034Key deployment project of the Chinese Academy of Sciences ZDRW-CN-2016-1the100-Talent Program of the Chinese Academy of Sciences, and the Open Fund of Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University WYKF2019-7

Figures(4)

  • Solvent-free polyurethanes are synthesized under certain conditions via a rapid reaction between liquid prepolymers. During this process the molecular weight of the polymer is rapidly increased to produce polymeric materials containing a carbamate-based structure at a very fast rate. The organic solvents are completely avoided in the solvent-free polyurethane synthesis process, thus avoiding all the problems associated with the use of organic solvents. Solvent-free polyurethane synthetic leather is extruded directly without adding solvents in the production and processing process, which has the advantages of low VOC emission and environmentally friendly. This review brings together theoretical and experimental research on the application and synthesis and preparation of solvent-free polyurethanes to generate an understanding of the theory and synthesis and preparation techniques associated with solvent-free polyurethanes. The review includes (i) the application and development direction of solvent-free polyurethane, (ii) an overview of the technology of solvent-free polyurethane synthetic leather preparation, (iii) a study of the modification and synthesis of solvent-free polyurethane prepolymers, (iv) a summary of the technology of rapid foam forming of solvent-free polyurethane and its influencing factors, (v) a review of the technology of solvent-free polyurethane synthetic leather preparation. In addition to the review, a corresponding overview of the theoretical and experimental advances in solvent-free delayed foaming technology in recent years and a summary of the technology and experience in the preparation of solvent-free polyurethanes are also presented.
  • 加载中
    1. [1]

      Toldy, A.; Harakaly, G.; Szolnoki, B. Flame retardancy of thermoplastics polyurethanes. Polym. Degrad. Stabil. 2012, 97, 2524–2530.  doi: 10.1016/j.polymdegradstab.2012.07.015

    2. [2]

      Aou, K.; Ge, S.; Mowery, M. Two-domain morphology in viscoelastic polyurethane foams. Polymer 2015, 56, 37–45.  doi: 10.1016/j.polymer.2014.09.070

    3. [3]

      Darshil, U.; David, P. Silk cocoons as natural macro-balloon fillers in novel polyurethane-based syntactic foams. Polymer 2015, 56, 93–101.  doi: 10.1016/j.polymer.2014.09.021

    4. [4]

      Jacopo, B.; Patrizia, C.; Irene, A. Flexible polyurethane foams green production employing lignin or oxypropylated lignin. Eur. Polym. J. 2015, 64, 147–156.  doi: 10.1016/j.eurpolymj.2014.11.039

    5. [5]

      Yu, C. L.; John, R. S. Layered double hydroxide-based fire resistant coatings for flexible polyurethane foam. Polymer 2015, 56, 284–292.  doi: 10.1016/j.polymer.2014.11.023

    6. [6]

      Yong, C. C.; Ha, Y. K.; Jae, W. C. Preparation of water-compatible antifungal polyurethane with grafted benzimidazole as the antifungal agent. J. Appl. Polym. Sci. 2015, 132, 41676–41685.

    7. [7]

      Gabriela, C.; Octavian, C. Mixed-matrix membranes based on polyurethane containing nanohydroxyapatite and its potential applications. J. Appl. Polym. Sci. 2015, 132, 41813–41824.

    8. [8]

      Lee, A.; Yu, L. D. Green polyurethane from lignin and soybean oil through non-isocyanate reactions. Eur. Polym. J. 2015, 63, 67–73.  doi: 10.1016/j.eurpolymj.2014.11.023

    9. [9]

      Hosgor, Z. Nonisocyanate polyurethane/silica hybrid coatings via a sol-gel route. Adv. Polym. Tech. 2012, 31, 390–400.  doi: 10.1002/adv.20262

    10. [10]

      Ma, X. Y.; Wu, Z.; Zhang, S. F.; Yang, X. P.; Hu, X. L. Forming mechanism and key technologies of solvent free polyurethane synthetic leather. China Leather 2013, 42, 11–16.

    11. [11]

      Li, Q.; Ai, P. X. Properties of one component polyurethane waterproof coating analysis. Elastomer 2008, 18, 57–59.

    12. [12]

      Wang, Y. Y.; Yang, J. J.; Zhang, J. A.; Wu, M. Y.; Wu, Q. Y. Preparation and application of solvent-free PU elastomer. Coating and Protection 2013, 5, 6–17.

    13. [13]

      Zhang, H. R.; Ma, X. Y.; Guo, M. Y.; Qiu, X. H.; Gao, J. Preparation and properties of casting polyurethane foam coating used in synthetic leather. China Leather 2015, 18, 60–63.

    14. [14]

      Wu, Y.; Ning, C. F.; Yuan, X. B.; Feng, X. P. U. S. Patent, C08G. 8022164. 2011.

    15. [15]

      Yu, D. S.; Zhu, C. C.; Zhang, Y. Q. Synthesis of polyether-polyol type polyurethane elastomer by quasi-prepolymer method. Adhesion 2005, 06, 10–12.

    16. [16]

      Dong, G.; Zhao, G.; Guan, Y.; Li, S.; Wang, X. Formation mechanism and structural characteristics of unfoamed skin layer in microcellular injection-molded parts. J. Cell. Plast. 2016, 52, 419–439.  doi: 10.1177/0021955X15577149

    17. [17]

      Sun, H.; Sur, G. S.; Mark, J. E. Microcellular foams from polyethersulfone and polyphenylsulfone: preparation and mechanical properties. Eur. Polym. J. 2002, 38, 2373–2381.  doi: 10.1016/S0014-3057(02)00149-0

    18. [18]

      Zhang, M.; Luo, Y. Y.; Jiang, Z. G. Solvent-free polyurethane elastic floor used in ship. New Chemical Materials 2010, 6, 130–132.
       

    19. [19]

      Gama, N. V.; Silva, R.; Costa, M.; Barros, T. A.; Ferreira, A. Statistical evaluation of the effect of formulation on the properties of crude glycerol polyurethane foams. Polym. Test. 2016, 10, 200–206.

    20. [20]

      Sousa, A. F.; Matos, M.; Pinto, R. J. B.; Freire, C. S. R.; Silvestre, A. J. D. One-pot synthesis of biofoams from castor oil and cellulose microfibers for energy absorption impact materials. Cellulose 2014, 21, 1723–1733.  doi: 10.1007/s10570-014-0229-z

    21. [21]

      Javni, I.; Zhang, W.; Petrovic, Z. S. Effect of different isocyanates on the properties of soy-based polyurethanes. J. Appl. Polym. Sci. 2003, 88, 2912–2916.  doi: 10.1002/app.11966

    22. [22]

      Aniceto, B.; Jose, P. S.; Portugal, I.; Silva, C. M. Biomass-based polyols through oxypropylation reaction. ChemSusChem. 2012, 5, 1358–1368.  doi: 10.1002/cssc.201200032

    23. [23]

      Min, N.; Guang, J. Z.; Mehmet, H. A. Polycondensation reaction and its mechanism during lignocellulosic liquefaction by an acid catalyst: a review. Forestry Studies in China 2011, 13, 71–79.  doi: 10.1007/s11632-011-0109-7

    24. [24]

      Douglas, A. W.; Zeno, W. W. Multistep chemistry in thin films; the challenges of blocked isocyanates. Prog. Org. Coat. 2001, 43, 131–140.  doi: 10.1016/S0300-9440(01)00188-6

    25. [25]

      Delebecq, E.; Pascault, J. P.; Boutevin, B.; Ganachaud, F. On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem. Rev. 2013, 113, 80–118.  doi: 10.1021/cr300195n

    26. [26]

      Querat, E.; Tighzert, L.; Pascault, J. P.; Dusek, K. Blocked isocyanate-reaction and thermal behaviour of the toluene 2, 4-diisocyanate dimer. Angew. Makromol. Chem. 1996, 242, 1–36.  doi: 10.1002/apmc.1996.052420101

    27. [27]

      Querat, E.; Tighzert, L.; Pascault, J. P. Microencapsulation of isocyanates. Characterization and storage stability of microcapsules in a polyester α, ω-ol. J. Coating. Technol. 1996, 68, 83–90.

    28. [28]

      Spyrou, E.; Metternich, H. J.; Franke, R. Isophorone diisocyanate in blocking agent free polyurethane powder coating hardeners: analysis, selectivity, quantumchemical calculations. Prog. Org. Coat. 2003, 48, 201–206.  doi: 10.1016/S0300-9440(03)00104-8

    29. [29]

      Hausmann, A.; Heinz, P.; Joachim, D.; Reinhold, S. E. U. S. Patent, C08G. 6120903. 1999.

    30. [30]

      Du, P.; Eddie, C.; Pierre, A. U. S. Patent, C08G. 6242555. 1998.

    31. [31]

      Wu, P. Q. CN. Patent, C08G. 104371631. 2014.

    32. [32]

      Zou, D. R.; He, J. The preparation of a polyurethane elastomer based HTPB/IPDI by prepolymer method. Polyurethane Industry 2004, 19, 14–16.

    33. [33]

      Sun, H.; Mark, J. E. Preparation, characterization, and mechanical properties of some microcellular polysulfone foams. J. Appl. Polym. Science 2002, 85, 1692–1701.

    34. [34]

      Wang, Z. P.; Zhao, G. Effect of isocyanate on prepolymer of CPU. Appl. Sci. Tech. 2001, 29, 37–38.

    35. [35]

      Maier, A. W.; Franz, W.; Herbert, W.; Josef, K.; Alfred, B. U. S. Patent C08G. 6635723. 2000.

    36. [36]

      Zhao, Y. Z.; Wang, G. L.; Lv, Q. T.; Hou, Y. B. CN. Patent, C08G. 101280167. 2007.

    37. [37]

      Chen, X. W.; Lv, H. B.; Jiang, P. CN. Paten, C08G. 104072715. 2014.

    38. [38]

      Blum, B.; Harald, M.; Jurgen, M.; Heino, P.; Joachim, A. U. S. Patent, C08G. 6610779. 2001.

    39. [39]

      Maier, A. I.; Winkelmann, S.; Franz, K.; Alfred, T.; Werner, B. U. S. Patent, C08G. 6787596. 2000.

    40. [40]

      Zhao, Y. Z.; Wang, G. L.; Lv, Q. T.; Hou, Y. B. CN. Patent, C08G. 101280167. 2006.

    41. [41]

      Kaushiva, B. D.; McCartney, S. R.; Rossmy, G. R.; Wilkesa, G. L. Surfactant level influences on structure and properties of flexible slabstock polyurethane foams. Polymer 2000, 41, 285–310.  doi: 10.1016/S0032-3861(99)00135-4

    42. [42]

      McCluskey, J. V.; O'Neill, R. E.; Priester, R. D.; Ramsey, W. A. Vibrating rod viscometer: a valuable probe into polyurethane chemistry. J. Cell. Plast. 1994, 30, 224–241.  doi: 10.1177/0021955X9403000302

    43. [43]

      Elwell, M. J.; Ryan, A. J.; Grunbauer, H. J. M.; VanLieshout, H. C. In-situ studies of structure development during the reactive processing of model flexible polyurethane foam systems using FT-IR spectroscopy, synchrotron SAXS, and rheology. Macromolecules 1996, 29, 2960–2968.

    44. [44]

      Mora, L. D.; Artavia, C. W.; Macosko, C. Modulus development during reactive urethane foaming. J. Rheol. 1991, 35, 921–940.

    45. [45]

      Raps, D.; Hossieny, N.; Park, C. B.; Altstädt, V. Past and present developments in polymer bead foams and bead foaming technology. Polymer 2015, 56, 5–19.

    46. [46]

      Reignier, J.; Tatibouët, J.; Gendron, R. Batch foaming of poly(ε-caprolactone) using carbon dioxide: impact of crystallization on cell nucleation as probed by ultrasonic measurements. Polymer 2006, 47, 5012–5024.

    47. [47]

      Zhai, W.; Wang, H.; Yu, J.; Dong, J. Y.; He, J. Foaming behavior of isotactic polypropylene in supercritical CO2 influenced by phase morphology via chain grafting. Polymer 2008, 49, 3146–3156.

    48. [48]

      Miller, D.; Chatchaisucha, P.; Kumar, V. Microcellular and nanocellular solid-state polyetherimide (PEI) foams using sub-critical carbon dioxide I. Processing and structure. Polymer 2009, 50, 5576–5584.

    49. [49]

      Ito, S.; Matsunaga, K.; Tajima, M.; Yoshida, Y. Generation of microcellular polyurethane with supercritical carbon dioxide. J. Appl. Polym. Sci. 2007, 106, 3581–3586.

    50. [50]

      Goel, S. K.; Beckman, E. J. Generation of microcellular polymeric foams using supercritical carbon dioxide. I: effect of pressure and temperature on nucleation. Polym. Eng. Sci. 1994, 34, 1137–1147.

    51. [51]

      Tsivintzelis, I.; Angelopoulou, A. G.; Panayiotou, C. Foaming of polymers with supercritical CO2: an experimental and theoretical study. Polymer 2007, 48, 5928–5939.

    52. [52]

      Jo, C.; Fu, J.; Naguib, H. E. Constitutive modeling for mechanical behavior of PMMA microcellular foams. Polymer 2005, 46, 11896–11903.

    53. [53]

      Xu, X. F.; Cristancho, D. E.; Costeux, S. Density-functional theory for polymer-carbon dioxide mixtures: a perturbed-chain SAFT approach. J. Chem. Phys. 2012, 137.

    54. [54]

      Tomasko, D. L.; Feng, L. Development of CO2 for polymer foam applications. J. Supercrit. Fluid. 2009, 47, 493–499.

    55. [55]

      Hossieny, N.; Shaayegan, V.; Ameli, A.; Saniei, M.; Park, C. B. Characterization of hard-segment crystalline phase of thermoplastic polyurethane in the presence of butane and glycerol monosterate and its impact on mechanical property and microcellular morphology. Polymer 2007, 112, 208–218.

    56. [56]

      Li, D. C.; Liu, T.; Zhao, L.; Yuan, W. K. Controlling sandwich-structure of PET microcellular foams using coupling of CO2 diffusion and induced crystallization. AICHE J. 2012, 58, 2512–2523.

    57. [57]

      Jia, P.; Hu, J.; Zhai, W. T.; Duan, Y. G.; Zhang, J. M.; Han, C. Y. Cell morphology and improved heat resistance of microcellular poly(L-lactide) foam via introducing stereocomplex crystallites of PLA. Ind. Eng. Chem. Res. 2015, 54, 2476–2488.

    58. [58]

      Ji, G. Y.; Zhai, W. T.; Lin, D. P.; Ren, Q.; Zheng, W. G.; Jung, D. W. Microcellular foaming of poly(lactic acid)/silica nanocomposites in compressed CO2: critical influence of crystallite size on cell morphology and foam expansion. Ind. Eng. Chem. Res. 2013, 52, 6390–6398.

    59. [59]

      Kuboki, T. Mechanical properties and foaming behavior of injection molded cellulose fiber reinforced polypropylene composite foams. J. Cell. Plast. 2014, 50, 129–143.

    60. [60]

      Nuno, V. G.; Artur, F.; Ana, B. T. Polyurethane foams: past, present, and future. Materials 2018, 11, 1841–1876.

    61. [61]

      Theodoros, G. C.; Constantine, D. S. Sponges and sponge-like materials in sample preparation: a journey from past to present and into the future. Molecules 2020, 25, 3673–3693.

    62. [62]

      Armin, E. K.; Pedram, F. Technical lignin and its potential modification routes: a mini-review. Ind. Crop. Prod. 2020, 154, 2732–2745.

    63. [63]

      Li, W. M.; Su, Y. M. CN. Patent, C08G. 105713168. 2016.

    64. [64]

      Ana, L. S.; João, C. B. Recent developments in polyurethane catalysis: catalytic mechanisms review. Catal. Rev. 2004, 46, 31–51.

    65. [65]

      Haritz, S.; Amanda, C. E.; Julian, M. W. C.; Jeannette, M. G.; Daniel, J. C.; Ana, P.; David, M.; Gavin, O. J.; Julia, E. R.; Hans, W. H.; James, L. H. Organic acid-catalyzed polyurethane formation via a dual-activated mechanism: unexpected preference of N-activation over O-activation of isocyanates. J. Am. Chem. Soc. 2013, 135, 16235−16241.

    66. [66]

      McEntire, A.; Edward, E. U. S. Patent, C08G. 4094827. 1976.

    67. [67]

      Speranza, B.; George, P.; Zimmerman, B.; Robert, L. U. S. Patent, C08G. 4194069. 1978.

    68. [68]

      Tian, L. L. CN. Patent, C08G. 104371634. 2014.

    69. [69]

      Zhang, M. Y. CN. Patent, C08G. 10402715. 2014.

    70. [70]

      Arai, S.; Tamano, Y.; Tsutsumi, Y. U. S. Patent, C08G. 4617286. 1984.

  • 加载中
    1. [1]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    2. [2]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    3. [3]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    4. [4]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    5. [5]

      Zheng Zhao Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270

    6. [6]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    7. [7]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    8. [8]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    9. [9]

      Yujie LiYa-Nan WangYin-Gen LuoHongcai YangJinrui RenXiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576

    10. [10]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    11. [11]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    12. [12]

      Yizhe ChenYuzhou JiaoLiangyu SunCheng YuanQian ShenPeng LiShiming ZhangJiujun Zhang . Nonmetallic phosphorus alloying to regulate the oxygen reduction mechanisms of platinum catalyst. Chinese Chemical Letters, 2025, 36(4): 110789-. doi: 10.1016/j.cclet.2024.110789

    13. [13]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    14. [14]

      Chaohui ZhengJing XiShiyi LongTianpei HeRui ZhaoXinyuan LuoNa ChenQuan Yuan . Persistent luminescence encoding for rapid and accurate oral-derived bacteria identification. Chinese Chemical Letters, 2025, 36(1): 110223-. doi: 10.1016/j.cclet.2024.110223

    15. [15]

      Jia-hui Li Jinkai Qiu Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381

    16. [16]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    17. [17]

      Hao WangMeng-Qi PanYa-Fei WangChao ChenJian XuYuan-Yuan GaoChuan-Song QiWei LiXian-He Bu . Post-synthetic modifications of MOFs by different bolt ligands for controllable release of cargoes. Chinese Chemical Letters, 2024, 35(10): 109581-. doi: 10.1016/j.cclet.2024.109581

    18. [18]

      Qiang WuBaofeng Wang . Exploring synthetic strategy for stabilizing nickel-rich layered oxide cathodes through structural design. Chinese Chemical Letters, 2024, 35(12): 110089-. doi: 10.1016/j.cclet.2024.110089

    19. [19]

      Junyi YuYin ChengAnhong CaiXianfeng HuangQingrui Zhang . Synthetic Cu(Ⅲ) from copper plating wastewater for onsite decomplexation of Cu(Ⅱ)- and Ni(Ⅱ)-organic complexes. Chinese Chemical Letters, 2025, 36(2): 110549-. doi: 10.1016/j.cclet.2024.110549

    20. [20]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

Metrics
  • PDF Downloads(17)
  • Abstract views(619)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return