Preparation Technology of Solvent-free Polyurethane: A Mini-Review
- Corresponding author: Wen-Mu LI, liwm@fjirsm.ac.cn & These authors contributed equally to this work
Citation: Yu-Miao SU, Ting WANG, Yu-Lin DING, Jia-Jing HUANG, Wen-Mu LI. Preparation Technology of Solvent-free Polyurethane: A Mini-Review[J]. Chinese Journal of Structural Chemistry, ;2020, 39(12): 2057-2067. doi: 10.14102/j.cnki.0254–5861.2011–3020
Toldy, A.; Harakaly, G.; Szolnoki, B. Flame retardancy of thermoplastics polyurethanes. Polym. Degrad. Stabil. 2012, 97, 2524–2530.
doi: 10.1016/j.polymdegradstab.2012.07.015
Aou, K.; Ge, S.; Mowery, M. Two-domain morphology in viscoelastic polyurethane foams. Polymer 2015, 56, 37–45.
doi: 10.1016/j.polymer.2014.09.070
Darshil, U.; David, P. Silk cocoons as natural macro-balloon fillers in novel polyurethane-based syntactic foams. Polymer 2015, 56, 93–101.
doi: 10.1016/j.polymer.2014.09.021
Jacopo, B.; Patrizia, C.; Irene, A. Flexible polyurethane foams green production employing lignin or oxypropylated lignin. Eur. Polym. J. 2015, 64, 147–156.
doi: 10.1016/j.eurpolymj.2014.11.039
Yu, C. L.; John, R. S. Layered double hydroxide-based fire resistant coatings for flexible polyurethane foam. Polymer 2015, 56, 284–292.
doi: 10.1016/j.polymer.2014.11.023
Yong, C. C.; Ha, Y. K.; Jae, W. C. Preparation of water-compatible antifungal polyurethane with grafted benzimidazole as the antifungal agent. J. Appl. Polym. Sci. 2015, 132, 41676–41685.
Gabriela, C.; Octavian, C. Mixed-matrix membranes based on polyurethane containing nanohydroxyapatite and its potential applications. J. Appl. Polym. Sci. 2015, 132, 41813–41824.
Lee, A.; Yu, L. D. Green polyurethane from lignin and soybean oil through non-isocyanate reactions. Eur. Polym. J. 2015, 63, 67–73.
doi: 10.1016/j.eurpolymj.2014.11.023
Hosgor, Z. Nonisocyanate polyurethane/silica hybrid coatings via a sol-gel route. Adv. Polym. Tech. 2012, 31, 390–400.
doi: 10.1002/adv.20262
Ma, X. Y.; Wu, Z.; Zhang, S. F.; Yang, X. P.; Hu, X. L. Forming mechanism and key technologies of solvent free polyurethane synthetic leather. China Leather 2013, 42, 11–16.
Li, Q.; Ai, P. X. Properties of one component polyurethane waterproof coating analysis. Elastomer 2008, 18, 57–59.
Wang, Y. Y.; Yang, J. J.; Zhang, J. A.; Wu, M. Y.; Wu, Q. Y. Preparation and application of solvent-free PU elastomer. Coating and Protection 2013, 5, 6–17.
Zhang, H. R.; Ma, X. Y.; Guo, M. Y.; Qiu, X. H.; Gao, J. Preparation and properties of casting polyurethane foam coating used in synthetic leather. China Leather 2015, 18, 60–63.
Wu, Y.; Ning, C. F.; Yuan, X. B.; Feng, X. P. U. S. Patent, C08G. 8022164. 2011.
Yu, D. S.; Zhu, C. C.; Zhang, Y. Q. Synthesis of polyether-polyol type polyurethane elastomer by quasi-prepolymer method. Adhesion 2005, 06, 10–12.
Dong, G.; Zhao, G.; Guan, Y.; Li, S.; Wang, X. Formation mechanism and structural characteristics of unfoamed skin layer in microcellular injection-molded parts. J. Cell. Plast. 2016, 52, 419–439.
doi: 10.1177/0021955X15577149
Sun, H.; Sur, G. S.; Mark, J. E. Microcellular foams from polyethersulfone and polyphenylsulfone: preparation and mechanical properties. Eur. Polym. J. 2002, 38, 2373–2381.
doi: 10.1016/S0014-3057(02)00149-0
Zhang, M.; Luo, Y. Y.; Jiang, Z. G. Solvent-free polyurethane elastic floor used in ship. New Chemical Materials 2010, 6, 130–132.
Gama, N. V.; Silva, R.; Costa, M.; Barros, T. A.; Ferreira, A. Statistical evaluation of the effect of formulation on the properties of crude glycerol polyurethane foams. Polym. Test. 2016, 10, 200–206.
Sousa, A. F.; Matos, M.; Pinto, R. J. B.; Freire, C. S. R.; Silvestre, A. J. D. One-pot synthesis of biofoams from castor oil and cellulose microfibers for energy absorption impact materials. Cellulose 2014, 21, 1723–1733.
doi: 10.1007/s10570-014-0229-z
Javni, I.; Zhang, W.; Petrovic, Z. S. Effect of different isocyanates on the properties of soy-based polyurethanes. J. Appl. Polym. Sci. 2003, 88, 2912–2916.
doi: 10.1002/app.11966
Aniceto, B.; Jose, P. S.; Portugal, I.; Silva, C. M. Biomass-based polyols through oxypropylation reaction. ChemSusChem. 2012, 5, 1358–1368.
doi: 10.1002/cssc.201200032
Min, N.; Guang, J. Z.; Mehmet, H. A. Polycondensation reaction and its mechanism during lignocellulosic liquefaction by an acid catalyst: a review. Forestry Studies in China 2011, 13, 71–79.
doi: 10.1007/s11632-011-0109-7
Douglas, A. W.; Zeno, W. W. Multistep chemistry in thin films; the challenges of blocked isocyanates. Prog. Org. Coat. 2001, 43, 131–140.
doi: 10.1016/S0300-9440(01)00188-6
Delebecq, E.; Pascault, J. P.; Boutevin, B.; Ganachaud, F. On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem. Rev. 2013, 113, 80–118.
doi: 10.1021/cr300195n
Querat, E.; Tighzert, L.; Pascault, J. P.; Dusek, K. Blocked isocyanate-reaction and thermal behaviour of the toluene 2, 4-diisocyanate dimer. Angew. Makromol. Chem. 1996, 242, 1–36.
doi: 10.1002/apmc.1996.052420101
Querat, E.; Tighzert, L.; Pascault, J. P. Microencapsulation of isocyanates. Characterization and storage stability of microcapsules in a polyester α, ω-ol. J. Coating. Technol. 1996, 68, 83–90.
Spyrou, E.; Metternich, H. J.; Franke, R. Isophorone diisocyanate in blocking agent free polyurethane powder coating hardeners: analysis, selectivity, quantumchemical calculations. Prog. Org. Coat. 2003, 48, 201–206.
doi: 10.1016/S0300-9440(03)00104-8
Hausmann, A.; Heinz, P.; Joachim, D.; Reinhold, S. E. U. S. Patent, C08G. 6120903. 1999.
Du, P.; Eddie, C.; Pierre, A. U. S. Patent, C08G. 6242555. 1998.
Wu, P. Q. CN. Patent, C08G. 104371631. 2014.
Zou, D. R.; He, J. The preparation of a polyurethane elastomer based HTPB/IPDI by prepolymer method. Polyurethane Industry 2004, 19, 14–16.
Sun, H.; Mark, J. E. Preparation, characterization, and mechanical properties of some microcellular polysulfone foams. J. Appl. Polym. Science 2002, 85, 1692–1701.
Wang, Z. P.; Zhao, G. Effect of isocyanate on prepolymer of CPU. Appl. Sci. Tech. 2001, 29, 37–38.
Maier, A. W.; Franz, W.; Herbert, W.; Josef, K.; Alfred, B. U. S. Patent C08G. 6635723. 2000.
Zhao, Y. Z.; Wang, G. L.; Lv, Q. T.; Hou, Y. B. CN. Patent, C08G. 101280167. 2007.
Chen, X. W.; Lv, H. B.; Jiang, P. CN. Paten, C08G. 104072715. 2014.
Blum, B.; Harald, M.; Jurgen, M.; Heino, P.; Joachim, A. U. S. Patent, C08G. 6610779. 2001.
Maier, A. I.; Winkelmann, S.; Franz, K.; Alfred, T.; Werner, B. U. S. Patent, C08G. 6787596. 2000.
Zhao, Y. Z.; Wang, G. L.; Lv, Q. T.; Hou, Y. B. CN. Patent, C08G. 101280167. 2006.
Kaushiva, B. D.; McCartney, S. R.; Rossmy, G. R.; Wilkesa, G. L. Surfactant level influences on structure and properties of flexible slabstock polyurethane foams. Polymer 2000, 41, 285–310.
doi: 10.1016/S0032-3861(99)00135-4
McCluskey, J. V.; O'Neill, R. E.; Priester, R. D.; Ramsey, W. A. Vibrating rod viscometer: a valuable probe into polyurethane chemistry. J. Cell. Plast. 1994, 30, 224–241.
doi: 10.1177/0021955X9403000302
Elwell, M. J.; Ryan, A. J.; Grunbauer, H. J. M.; VanLieshout, H. C. In-situ studies of structure development during the reactive processing of model flexible polyurethane foam systems using FT-IR spectroscopy, synchrotron SAXS, and rheology. Macromolecules 1996, 29, 2960–2968.
Mora, L. D.; Artavia, C. W.; Macosko, C. Modulus development during reactive urethane foaming. J. Rheol. 1991, 35, 921–940.
Raps, D.; Hossieny, N.; Park, C. B.; Altstädt, V. Past and present developments in polymer bead foams and bead foaming technology. Polymer 2015, 56, 5–19.
Reignier, J.; Tatibouët, J.; Gendron, R. Batch foaming of poly(ε-caprolactone) using carbon dioxide: impact of crystallization on cell nucleation as probed by ultrasonic measurements. Polymer 2006, 47, 5012–5024.
Zhai, W.; Wang, H.; Yu, J.; Dong, J. Y.; He, J. Foaming behavior of isotactic polypropylene in supercritical CO2 influenced by phase morphology via chain grafting. Polymer 2008, 49, 3146–3156.
Miller, D.; Chatchaisucha, P.; Kumar, V. Microcellular and nanocellular solid-state polyetherimide (PEI) foams using sub-critical carbon dioxide I. Processing and structure. Polymer 2009, 50, 5576–5584.
Ito, S.; Matsunaga, K.; Tajima, M.; Yoshida, Y. Generation of microcellular polyurethane with supercritical carbon dioxide. J. Appl. Polym. Sci. 2007, 106, 3581–3586.
Goel, S. K.; Beckman, E. J. Generation of microcellular polymeric foams using supercritical carbon dioxide. I: effect of pressure and temperature on nucleation. Polym. Eng. Sci. 1994, 34, 1137–1147.
Tsivintzelis, I.; Angelopoulou, A. G.; Panayiotou, C. Foaming of polymers with supercritical CO2: an experimental and theoretical study. Polymer 2007, 48, 5928–5939.
Jo, C.; Fu, J.; Naguib, H. E. Constitutive modeling for mechanical behavior of PMMA microcellular foams. Polymer 2005, 46, 11896–11903.
Xu, X. F.; Cristancho, D. E.; Costeux, S. Density-functional theory for polymer-carbon dioxide mixtures: a perturbed-chain SAFT approach. J. Chem. Phys. 2012, 137.
Tomasko, D. L.; Feng, L. Development of CO2 for polymer foam applications. J. Supercrit. Fluid. 2009, 47, 493–499.
Hossieny, N.; Shaayegan, V.; Ameli, A.; Saniei, M.; Park, C. B. Characterization of hard-segment crystalline phase of thermoplastic polyurethane in the presence of butane and glycerol monosterate and its impact on mechanical property and microcellular morphology. Polymer 2007, 112, 208–218.
Li, D. C.; Liu, T.; Zhao, L.; Yuan, W. K. Controlling sandwich-structure of PET microcellular foams using coupling of CO2 diffusion and induced crystallization. AICHE J. 2012, 58, 2512–2523.
Jia, P.; Hu, J.; Zhai, W. T.; Duan, Y. G.; Zhang, J. M.; Han, C. Y. Cell morphology and improved heat resistance of microcellular poly(L-lactide) foam via introducing stereocomplex crystallites of PLA. Ind. Eng. Chem. Res. 2015, 54, 2476–2488.
Ji, G. Y.; Zhai, W. T.; Lin, D. P.; Ren, Q.; Zheng, W. G.; Jung, D. W. Microcellular foaming of poly(lactic acid)/silica nanocomposites in compressed CO2: critical influence of crystallite size on cell morphology and foam expansion. Ind. Eng. Chem. Res. 2013, 52, 6390–6398.
Kuboki, T. Mechanical properties and foaming behavior of injection molded cellulose fiber reinforced polypropylene composite foams. J. Cell. Plast. 2014, 50, 129–143.
Nuno, V. G.; Artur, F.; Ana, B. T. Polyurethane foams: past, present, and future. Materials 2018, 11, 1841–1876.
Theodoros, G. C.; Constantine, D. S. Sponges and sponge-like materials in sample preparation: a journey from past to present and into the future. Molecules 2020, 25, 3673–3693.
Armin, E. K.; Pedram, F. Technical lignin and its potential modification routes: a mini-review. Ind. Crop. Prod. 2020, 154, 2732–2745.
Li, W. M.; Su, Y. M. CN. Patent, C08G. 105713168. 2016.
Ana, L. S.; João, C. B. Recent developments in polyurethane catalysis: catalytic mechanisms review. Catal. Rev. 2004, 46, 31–51.
Haritz, S.; Amanda, C. E.; Julian, M. W. C.; Jeannette, M. G.; Daniel, J. C.; Ana, P.; David, M.; Gavin, O. J.; Julia, E. R.; Hans, W. H.; James, L. H. Organic acid-catalyzed polyurethane formation via a dual-activated mechanism: unexpected preference of N-activation over O-activation of isocyanates. J. Am. Chem. Soc. 2013, 135, 16235−16241.
McEntire, A.; Edward, E. U. S. Patent, C08G. 4094827. 1976.
Speranza, B.; George, P.; Zimmerman, B.; Robert, L. U. S. Patent, C08G. 4194069. 1978.
Tian, L. L. CN. Patent, C08G. 104371634. 2014.
Zhang, M. Y. CN. Patent, C08G. 10402715. 2014.
Arai, S.; Tamano, Y.; Tsutsumi, Y. U. S. Patent, C08G. 4617286. 1984.
Fangzhou Wang , Wentong Gao , Chenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199
Shuo Li , Xinran Liu , Yongjie Zheng , Jun Ma , Shijie You , Heshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971
Zheng Zhao , Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270
Shehla Khalid , Muhammad Bilal , Nasir Rasool , Muhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498
Qijun Tang , Wenguang Tu , Yong Zhou , Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170
Zimo Peng , Quan Zhang , Gaocan Qi , Hao Zhang , Qian Liu , Guangzhi Hu , Jun Luo , Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191
Shuang Li , Jiayu Sun , Guocheng Liu , Shuo Zhang , Zhong Zhang , Xiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
Baokang Geng , Xiang Chu , Li Liu , Lingling Zhang , Shuaishuai Zhang , Xiao Wang , Shuyan Song , Hongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924
Yanling Yang , Zhenfa Ding , Huimin Wang , Jianhui Li , Yanping Zheng , Hongquan Guo , Li Zhang , Bing Yang , Qingqing Gu , Haifeng Xiong , Yifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585
Tiankai Sun , Hui Min , Zongsu Han , Liang Wang , Peng Cheng , Wei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718
Linhui Liu , Wuwan Xiong , Mingli Fu , Junliang Wu , Zhenguo Li , Daiqi Ye , Peirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870
Weichen Zhu , Wei Zuo , Pu Wang , Wei Zhan , Jun Zhang , Lipin Li , Yu Tian , Hong Qi , Rui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341
Xue-Zhi Wang , Yi-Tong Liu , Chuang-Wei Zhou , Bei Wang , Dong Luo , Mo Xie , Meng-Ying Sun , Yong-Liang Huang , Jie Luo , Yan Wu , Shuixing Zhang , Xiao-Ping Zhou , Dan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380
Hao Wang , Meng-Qi Pan , Ya-Fei Wang , Chao Chen , Jian Xu , Yuan-Yuan Gao , Chuan-Song Qi , Wei Li , Xian-He Bu . Post-synthetic modifications of MOFs by different bolt ligands for controllable release of cargoes. Chinese Chemical Letters, 2024, 35(10): 109581-. doi: 10.1016/j.cclet.2024.109581
Jun-Ting Mo , Zheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360
Jiajia Lv , Jie Gao , Hongyu Li , Zeli Yuan , Nan Dong . Rational design of hydroxytricyanopyrrole-based probes with high affinity and rapid visualization for amyloid-β aggregates in vitro and in vivo. Chinese Chemical Letters, 2024, 35(5): 108940-. doi: 10.1016/j.cclet.2023.108940
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
Fengkai Zou , Borui Su , Han Leng , Nini Xin , Shichao Jiang , Dan Wei , Mei Yang , Youhua Wang , Hongsong Fan . Red-emissive carbon quantum dots minimize phototoxicity for rapid and long-term lipid droplet monitoring. Chinese Chemical Letters, 2024, 35(10): 109523-. doi: 10.1016/j.cclet.2024.109523