Citation: Shao-Hua LIU, Yi LI, Kai-Ning DING, Wen-Kai CHEN, Yong-Fan ZHANG, Wei LIN. Mechanism on Carbon Vacancies in Polymeric Carbon Nitride for CO2 Photoreduction[J]. Chinese Journal of Structural Chemistry, ;2020, 39(12): 2068-2076. doi: 10.14102/j.cnki.0254–5861.2011–3005 shu

Mechanism on Carbon Vacancies in Polymeric Carbon Nitride for CO2 Photoreduction

  • Corresponding author: Wei LIN, wlin@fzu.edu.cn
  • Received Date: 22 October 2020
    Accepted Date: 17 November 2020

    Fund Project: the National Natural Science Foundation of China 21973014the National Natural Science Foundation of China 21773030

Figures(7)

  • Defect engineering has being regarded as one of the effective ways to regulate chemical and electronic structure of semiconductors. Recently, our collaborative work has shown experimentally that carbon vacancy on polymeric carbon nitride (CV) can greatly improve the CO2 to CO conversion with a 45-fold improvement over the polymeric carbon nitride (Angew. Chem. Int. Ed., 2019, 58, 1134). In order to clarify the detailed mechanism of promotion, we have systematically studied the electronic properties of CV and hydrogenated CV (CV+H) as well as the effective CO2 reduction reaction through density functional theory calculations. We found that it is the synergistic effect for the CO2 reduction reaction in the CV systems, as the onset potentials of several CVs are much lower than that of the polymeric carbon nitride. In particular, the onset potentials of CV1, CV2, and CV2+H are around 0.9~1.5 eV with a strong chemisorbed CO2 on them. Combined with the analysis of the electronic properties, our results confirm that defect engineering increases the lifetime of photo-generated charges, improves photocatalytic activity, and promotes the CO2 reduction reaction on the defected polymeric carbon nitrides.
  • 加载中
    1. [1]

      Jiao, X. C.; Zheng, K.; Liang, L.; Li, X. D.; Sun, Y. F.; Xie, Y. Fundamentals and challenges of ultrathin 2d photocatalysts in boosting CO2 photoreduction. Chem. Soc. Rev. 2020, 49, 6592−6604.  doi: 10.1039/D0CS00332H

    2. [2]

      Li, X.; Yu, J. G.; Jaroniec, M.; Chen, X. B. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 2019, 119, 3962−4179.  doi: 10.1021/acs.chemrev.8b00400

    3. [3]

      Jing, L. Q.; Zhou, W.; Tian, G. H.; Fu, H. G. Surface tuning for oxide-based nanomaterials as efficient photocatalysts. Chem. Soc. Rev. 2013, 42, 9509−49.  doi: 10.1039/c3cs60176e

    4. [4]

      Usubharatana, P.; McMartin, D.; Veawab, A.; Tontiwachwuthikul, P. Photocatalytic process for CO2 emission reduction from industrial flue gas streams. Ind. Eng. Chem. Res. 2006, 45, 2558−2568.  doi: 10.1021/ie0505763

    5. [5]

      Nakamura, H. Recent organic pollution and its biosensing methods. Anal. Methods 2010, 2, 430−444.  doi: 10.1039/b9ay00315k

    6. [6]

      Kemp, K. C.; Seema, H.; Saleh, M.; Le, N. H.; Mahesh, K.; Chandra, V.; Kim, K. S. Environmental applications using graphene composites: water remediation and gas adsorption. Nanoscale 2013, 5, 3149−71.  doi: 10.1039/c3nr33708a

    7. [7]

      Mao, J.; Li, K.; Peng, T. Y. Recent advances in the photocatalytic CO2 reduction over semiconductors. Catal. Sci. Technol. 2013, 3, 2481−2498.  doi: 10.1039/c3cy00345k

    8. [8]

      Yamashitaa, H.; Fujii, Y.; Ichihashi, Y.; Zhang, S. G.; Ikeue, K.; Park, D. R.; Koyano, K.; Tatsumi, T.; Anpo, M. Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves. Catal. Today 1998, 10, 221−227.

    9. [9]

      White, J. L.; Baruch, M. F.; Pander III, J. E.; Hu, Y.; Fortmeyer, I. C.; Park, J. E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y.; Shaw, T. W.; Abelev, E.; Bocarsly, A. B. Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chem. Rev. 2015, 115, 12888−12935.  doi: 10.1021/acs.chemrev.5b00370

    10. [10]

      Lei, F. C.; Sun, Y. F.; Liu, K. T.; Gao, S.; Liang, L.; Pan, B. C.; Xie, Y. Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J. Am. Chem. Soc. 2014, 136, 6826−9.  doi: 10.1021/ja501866r

    11. [11]

      Tan, H.; Zhao, Z.; Zhu, W. B.; Coker, E. N.; Li, B.; Zheng, M.; Yu, W.; Fan, H.; Sun, Z. Oxygen vacancy enhanced photocatalytic activity of pervoskite SrtiO3. ACS Appl. Mater. Inter. 2014, 6, 19184−19190.  doi: 10.1021/am5051907

    12. [12]

      Huang, B.; Gillen, R.; Robertson, J. Study of CeO2 and its native defects by density functional theory with repulsive potential. J. Phys. Chem. C 2014, 118, 24248−24256.  doi: 10.1021/jp506625h

    13. [13]

      Ling, Y. C.; Wang, G. M.; Reddy, J.; Wang, C. C.; Zhang, J. Z.; Li, Y. The influence of oxygen content on the thermal activation of hematite nanowires. Angew. Chem. Int. Ed. 2012, 124, 4150−4155.  doi: 10.1002/ange.201107467

    14. [14]

      Ye, S.; Wang, R.; Wu, M. Z.; Yuan, Y. P. A review on g-C3N4 for photocatalytic water splitting and CO2 reduction. Appl. Surf. Sci. 2015, 358, 15−27.  doi: 10.1016/j.apsusc.2015.08.173

    15. [15]

      Lakhi, K. S.; Park, D. H.; Al-Bahily, K.; Cha, W.; Viswanathan, B.; Choy, J. H.; Vinu, A. Mesoporous carbon nitrides: synthesis, functionalization, and applications. Chem. Soc. Rev. 2017, 46, 72−101.  doi: 10.1039/C6CS00532B

    16. [16]

      Wang, Y. L.; Tian, Y.; Yan, L.; Su, Z. M. DFT study on sulfur-doped g-C3N4 nanosheets as a photocatalyst for CO2 reduction reaction. J. Phys. Chem. C 2018, 122, 7712−7719.  doi: 10.1021/acs.jpcc.8b00098

    17. [17]

      Ling, C. Y.; Niu, X. H.; Li, Q.; Du, A. J.; Wang, J. L. Metal-free single atom catalyst for N2 fixation driven by visible light. J. Am. Chem. Soc. 2018, 140, 14161−14168.  doi: 10.1021/jacs.8b07472

    18. [18]

      Li, Y. H.; Ho, W. K.; Lv, K. L.; Zhu, B. C.; Lee, S. C. Carbon vacancy-induced enhancement of the visible light-driven photocatalytic oxidation of NO over g-C3N4 nanosheets. Appl. Surf. Sci. 2018, 430, 380−389.  doi: 10.1016/j.apsusc.2017.06.054

    19. [19]

      Liao, G. F.; Gong, Y.; Zhang, L.; Gao, H. Y.; Yang, G. J. Y.; Fang, B. Z. Semiconductor polymeric graphitic carbon nitride photocatalysts: the "Holy Grail" for the photocatalytic hydrogen evolution reaction under visible light. Energy Environ. Sci. 2019, 12, 2080−2147.  doi: 10.1039/C9EE00717B

    20. [20]

      Gu, Z. Y.; Cui, Z. T.; Wang, Z. J.; Qin, K. S.; Asakura, Y.; Hasegawa, T.; Tsukuda, S.; Hongo, K.; Maezono, R.; Yin, S. Carbon vacancies and hydroxyls in graphitic carbon nitride: promoted photocatalytic NO removal activity and mechanism. Appl. Catal. B-Environ. 2020, 9, 119376−11.

    21. [21]

      Wen, J. Q.; Xie, J.; Chen, X. B.; Li, X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 2017, 391, 72−123.  doi: 10.1016/j.apsusc.2016.07.030

    22. [22]

      Wang, Y. L.; Zhang, Y.; Li. B. Z.; Luo, K.; Shi, K. Y.; Zhang, L.; Li, Y.; Yu T. J.; Hu, W. T.; Xie C. L.; Wu, Y. J.; Su, L.; Dong, X.; Zhao, Z. S.; Yang, G. Q.; Restacked Melon as highly-efficient photocatalyst. Nano Energy 2020, 77, 105124−10.  doi: 10.1016/j.nanoen.2020.105124

    23. [23]

      Yang, P. J.; Zhuzhang, H. Y; Wang, R. R.; Lin, W.; Wang, X. C. Carbon vacancies in a melon polymeric matrix promote photocatalytic carbon dioxide conversion. Angew. Chem. Int. Ed. 2019, 58, 1134−1137.  doi: 10.1002/anie.201810648

    24. [24]

      Shen, M.; Zhang, L. X.; Wang, M.; Tian, J. J.; Jin, X. X.; Guo, L. M.; Wang, L. Z.; Shi, J. L. Carbon-vacancy modified graphitic carbon nitride: enhanced CO2 photocatalytic reduction performance and mechanism probing. J. Mater. Chem. A 2019, 7, 1556−1563.  doi: 10.1039/C8TA09302D

    25. [25]

      Kresse. G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1995, 54, 11169−11186.

    26. [26]

      Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 16−50.

    27. [27]

      Blochl, P. E. A projector augmented-wave method. Phys. Rev. B 1994, 50, 17953−17979.  doi: 10.1103/PhysRevB.50.17953

    28. [28]

      Kresse, G. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1998, 59, 1759−1775.

    29. [29]

      Perdew, J.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865−3868.  doi: 10.1103/PhysRevLett.77.3865

    30. [30]

      Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787−1799.  doi: 10.1002/jcc.20495

    31. [31]

      Kong, T. T.; Jiang, Y. W.; Xiong, Y. J. Photocatalytic CO2 conversion: what can we learn from conventional COx hydrogenation? Chem. Soc. Rev. 2020, 49, 6579−6591.  doi: 10.1039/C9CS00920E

    32. [32]

      Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886−17892.  doi: 10.1021/jp047349j

    33. [33]

      Zhang, F. L.; Yi, J.; Peng, W.; Radjenovic, P. M.; Zhang, H.; Tian, Z. Q.; Li, J. F. Elucidating molecule-plasmon interactions in nanocavities with 2 nm spatial resolution and at the single-molecule level. Angew. Chem. Int. Ed. 2019, 58, 12133−12137.  doi: 10.1002/anie.201906517

    34. [34]

      Shi, H. N.; Long, S.; Hou, J. G.; Ye, L.; Sun, Y. W.; Ni, W. J.; Song, C. S.; Li, K. Y.; Gurzadyan, G. G.; Guo, X. W. Defects promote ultrafast charge separation in graphitic carbon nitride for enhanced visible-light-driven CO2 reduction activity. Chem. Eur. J. 2019, 25, 5028−5035.  doi: 10.1002/chem.201805923

    35. [35]

      Xue, J. W.; Fujitsuka, M.; Majima, T. Shallow trap state-induced efficient electron transfer at the interface of heterojunction photocatalysts: the crucial role of vacancy defects. ACS Appl. Mater. Inter. 2019, 11, 40860−7.  doi: 10.1021/acsami.9b14128

    36. [36]

      Yang, P. J.; Wang, L.; ZhuZhang, H. Y.; Wang, R.; Titirici, M. M.; Wang, X. X. Photocarving nitrogen vacancies in a polymeric carbon nitride for metal-free oxygen synthesis. Appl. Catal. B-Environ. 2019, 256, 117794−8.  doi: 10.1016/j.apcatb.2019.117794

    37. [37]

      Lu, S.; Li, C.; Li, H. H.; Zhao, Y. F.; Gong, Y. Y.; Niu, L. Y.; Liu, X. J.; Wang, T. The effects of nonmetal dopants on the electronic, optical and chemical performances of monolayer g-C3N4 by first-principles study. Appl. Surf. Sci. 2017, 392, 966−974.  doi: 10.1016/j.apsusc.2016.09.136

    38. [38]

      Azofra, L. M.; MacFarlane, D. R.; Sun, C. A DFT study of planar vs. corrugated graphene-like carbon nitride (g-C3N4) and its role in the catalytic performance of CO2 conversion. Phys. Chem. Chem. Phys. 2016, 18, 18507−14.  doi: 10.1039/C6CP02453J

    39. [39]

      Esrafili, M. D.; Sharifi, F.; Dinparast, L. Catalytic hydrogenation of CO2 over Pt- and Ni-doped graphene: a comparative DFT study. J. Mol. Graph. Model. 2017, 77, 143−152.  doi: 10.1016/j.jmgm.2017.08.016

    40. [40]

      Wu, H. Z.; Bandaru, S.; Huang, X. L.; Liu, J.; Li, L. L.; Wang, Z. Theoretical insight into the mechanism of photoreduction of CO2 to CO by graphitic carbon nitride. Phys. Chem. Chem. Phys. 2019, 21, 1514−1520.  doi: 10.1039/C8CP06956E

    41. [41]

      Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Gang, X.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76−80.  doi: 10.1038/nmat2317

    42. [42]

      Tong, Y. W.; Wei, C. G.; Li, Y.; Zhang, Y. F.; Lin, W. Unraveling the mechanisms of S-doped carbon nitride for photocatalytic oxygen reduction to H2O2. Phys. Chem. Chem. Phys. 2020, 22, 21099−21107.  doi: 10.1039/D0CP03533E

  • 加载中
    1. [1]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    2. [2]

      Yaoyin LouXiaoyang Jerry HuangKuang-Min ZhaoMark J. DouthwaiteTingting FanFa LuOuardia AkdimNa TianShigang SunGraham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300

    3. [3]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    6. [6]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    7. [7]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    8. [8]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    9. [9]

      Qiyan WuQing Li . Topologically close-packed intermetallic alloy electrocatalysts for CO2 reduction towards high value-added multi-carbon chemicals. Chinese Chemical Letters, 2025, 36(1): 110384-. doi: 10.1016/j.cclet.2024.110384

    10. [10]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    11. [11]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

    12. [12]

      Hao LvZhi LiPeng YinPing WanMingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457

    13. [13]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    14. [14]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    15. [15]

      Chenhao ZhangQian ZhangYezhou HuHanyu HuJunhao YangChang YangYe ZhuZhengkai TuDeli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429

    16. [16]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    17. [17]

      Lili ZhangHui GaoGong ZhangYuning DongKai HuangZifan PangTuo WangChunlei PeiPeng ZhangJinlong Gong . Cross-section design of the flow channels in membrane electrode assembly electrolyzer for CO2 reduction reaction through numerical simulations. Chinese Chemical Letters, 2025, 36(1): 110204-. doi: 10.1016/j.cclet.2024.110204

    18. [18]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    19. [19]

      Xingxing JiangYuxin ZhaoYan KongJianju SunShangzhao FengXin LuQi HuHengpan YangChuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555

    20. [20]

      Xiujuan WangYijie WangLuyun CuiWenqiang GaoXiao LiHong LiuWeijia ZhouJingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031

Metrics
  • PDF Downloads(8)
  • Abstract views(427)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return