Citation: Yan-Ning TANG, Ke-Wei SUN, Xue-Chao LI, Hai-Ming ZHANG, Li-Feng CHI. On-surface Synthesis of Graphene Nanoribbons[J]. Chinese Journal of Structural Chemistry, ;2020, 39(8): 1377-1384. doi: 10.14102/j.cnki.0254–5861.2011–2944 shu

On-surface Synthesis of Graphene Nanoribbons

Figures(4)

  • On-surface synthesis never fails to fascinate chemists by producing new functional polymers which can hardly been prepared via traditional solution chemistry. Among those newly prepared polymers, graphene nanoribbons (GNRs), featured with tunable band gap, have attracted substantial attention because they are considered as promising candidates for next generation carbon-based semiconductors. Here, we summarize the recent advances of GNRs prepared on single crystal surfaces with emphasis on the structural tuning and electronic properties of GNRs. Moreover, critical developments toward the application of GNRs have also been reviewed including the mass fabrication and the performance of GNRs as field effect transistors.
  • 加载中
    1. [1]

      Cai, J. M.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. L.; Mullen, K.; Fasel, R. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470–473.  doi: 10.1038/nature09211

    2. [2]

      Talirz, L.; Sde, H.; Kawai, S.; Ruffieux, P.; Meyer, E.; Feng, X. L.; Mllen, K.; Fasel, R.; Pignedoli, C. A.; Passerone, D. Band gap of atomically precise graphene nanoribbons as a function of ribbon length and termination. Chemphyschem 2019, 20, 2348–2353.  doi: 10.1002/cphc.201900313

    3. [3]

      Sun, K. W.; Ji, P. H.; Zhang, J. J.; Wang, J. X.; Li, X. C.; Xu, X.; Zhang, H. M.; Chi, L. F. On-surface synthesis of 8- and 10-armchair graphene nanoribbons. Small 2019, 15, 1804526.  doi: 10.1002/smll.201804526

    4. [4]

      Zhang, H. M.; Lin, H. P.; Sun, K. W.; Chen, L.; Zagranyarski, Y.; Aghdassi, N.; Duhm, S.; Li, Q.; Zhong, D. Y.; Li, Y. Y.; Mullen, K.; Fuchs, H.; Chi, L. F. On-surface synthesis of rylene-type graphene nanoribbons. J. Am. Chem. Soc. 2015, 137, 4022–4025.  doi: 10.1021/ja511995r

    5. [5]

      Kimouche, A.; Ervasti, M. M.; Drost, R.; Halonen, S.; Harju, A.; Joensuu, P. M.; Sainio, J.; Liljeroth, P. Ultra-narrow metallic armchair graphene nanoribbons. Nat. Commun. 2015, 6, 10177.  doi: 10.1038/ncomms10177

    6. [6]

      Beyer, D.; Wang, S. Y.; Pignedoli, C. A.; Melidonie, J.; Yuan, B. K.; Li, C.; Wilhelm, J.; Ruffieux, P.; Berger, R.; Mullen, K.; Fasel, R.; Feng, X. L. Graphene nanoribbons derived from zigzag edge-encased poly(para–2, 9-dibenzo[bc, kl]coronenylene) polymer chains. J. Am. Chem. Soc. 2019, 141, 4488–4488.  doi: 10.1021/jacs.9b01965

    7. [7]

      Ruffieux, P.; Wang, S. Y.; Yang, B.; Sanchez-Sanchez, C.; Liu, J.; Dienel, T.; Talirz, L.; Shinde, P.; Pignedoli, C. A.; Passerone, D.; Dumslaff, T.; Feng, X. L.; Mullen, K.; Fasel, R. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 2016, 531, 489–492.  doi: 10.1038/nature17151

    8. [8]

      Liu, J. Z.; Li, B. W.; Tan, Y. Z.; Giannakopoulos, A.; Sanchez-Sanchez, C.; Beljonne, D.; Ruffieux, P.; Fasel, R.; Feng, X. L.; Mullen, K. Toward cove-edged low band gap graphene nanoribbons. J. Am. Chem. Soc. 2015, 137, 6097–6103.  doi: 10.1021/jacs.5b03017

    9. [9]

      Yang, L.; Park, C. H.; Son, Y. W.; Cohen, M. L.; Louie, S. G. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 2007, 99, 186801.  doi: 10.1103/PhysRevLett.99.186801

    10. [10]

      Yang, X. Y.; Dou, X.; Rouhanipour, A.; Zhi, L. J.; Rader, H. J.; Mullen, K. Two-dimensional graphene nanoribbons. J. Am. Chem. Soc. 2008, 130, 4216–4217.  doi: 10.1021/ja710234t

    11. [11]

      Jiao, L. Y.; Zhang, L.; Wang, X. R.; Diankov, G.; Dai, H. J. Narrow graphene nanoribbons from carbon nanotubes. Nature 2009, 458, 877–880.  doi: 10.1038/nature07919

    12. [12]

      Chen, Y. C.; de Oteyza, D. G.; Pedramrazi, Z.; Chen, C.; Fischer, F. R.; Crommie, M. F. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano 2013, 7, 6123–6128.  doi: 10.1021/nn401948e

    13. [13]

      Wang, X. Y.; Dienel, T.; Di Giovannantonio, M.; Barin, G. B.; Kharche, N.; Deniz, O.; Urgel, J. I.; Widmer, R.; Stolz, S.; De Lima, L. H.; Muntwiler, M.; Tommasini, M.; Meunier, V.; Ruffieux, P.; Feng, X. L.; Fasel, R.; Mullen, K.; Narita, A. Heteroatom-doped perihexacene from a double helicene precursor: on-surface synthesis and properties. J. Am. Chem. Soc. 2017, 139, 4671–4674.  doi: 10.1021/jacs.7b02258

    14. [14]

      Kawai, S.; Saito, S.; Osumi, S.; Yamaguchi, S.; Foster, A. S.; Spijker, P.; Meyer, E. Atomically controlled substitutional boron-doping of graphene nanoribbons. Nat. Commun. 2015, 6, 8098.  doi: 10.1038/ncomms9098

    15. [15]

      Teeter, J. D.; Costa, P. S.; Pour, M. M.; Miller, D. P.; Zurek, E.; Enders, A.; Sinitskii, A. Epitaxial growth of aligned atomically precise chevron graphene nanoribbons on Cu(111). Chem. Commun. 2017, 53, 8463–8466.  doi: 10.1039/C6CC08006E

    16. [16]

      Carbonell-Sanroma, E.; Hieulle, J.; Vilas-Varela, M.; Brandimarte, P.; Lraola, M.; Barragan, A.; Li, J. C.; Abadia, M.; Corso, M.; Sanchez-Portal, D.; Pena, D.; Pascual, J. I. Doping of graphene nanoribbons via functional group edge modification. ACS Nano 2017, 11, 7355–7361.  doi: 10.1021/acsnano.7b03522

    17. [17]

      Marangoni, T.; Haberer, D.; Rizzo, D. J.; Cloke, R. R.; Fischer, F. R. Heterostructures through divergent edge reconstruction in nitrogen-doped segmented graphene nanoribbons. Chem. -Eur. J. 2016, 22, 13037–13040.  doi: 10.1002/chem.201603497

    18. [18]

      Zhang, Y.; Zhang, Y. F.; Li, G.; Lu, J. C.; Lin, X.; Du, S. X.; Berger, R.; Feng, X. L.; Mullen, K.; Gao, H. J. Direct visualization of atomically precise nitrogen-doped graphene nanoribbons. Appl. Phys. Lett. 2014, 105, 023101.  doi: 10.1063/1.4884359

    19. [19]

      Nguyen, G. D.; Tom, F. M.; Cao, T.; Pedramrazi, Z.; Chen, C.; Rizzo, D. J.; Joshi, T.; Bronner, C.; Chen, Y. C.; Favaro, M.; Louie, S. G.; Fischer, F. R.; Crommie, M. F. Bottom-up synthesis of n = 13 sulfur-doped graphene nanoribbons. J. Phys. Chem. C 2016, 120, 2684–2687.

    20. [20]

      Wang, X. Y.; Yao, X. L.; Narita, A.; Mullen, K. Heteroatom-doped nanographenes with structural precision. Acc. Chem. Res. 2019, 52, 2491–2505.  doi: 10.1021/acs.accounts.9b00322

    21. [21]

      Liu, M. Z.; Liu, M. X.; Zha, Z. Q.; Pan, J. L.; Qiu, X. H.; Li, T.; Wang, J. B.; Zheng, Y.; Zhong, D. Y. Thermally induced transformation of nonhexagonal carbon rings in graphene-like nanoribbons. J. Phys. Chem. C 2018, 122, 9586–9592.  doi: 10.1021/acs.jpcc.8b02565

    22. [22]

      Fan, Q.; Martin-Jimenez, D.; Ebeling, D.; Krug, C. K.; Brechmann, L.; Kohlmeyer, C.; Hilt, G.; Hieringer, W.; Schirmeisen, A.; Gottfried, J. M. Nanoribbons with nonalternant topology from fusion of polyazulene: carbon allotropes beyond graphene. J. Am. Chem. Soc. 2019, 141, 17713–17720.  doi: 10.1021/jacs.9b08060

    23. [23]

      Hou, I. C. Y.; Sun, Q.; Eimre, K.; Di Giovannantonio, M.; Urgel, J. I.; Ruffieux, P.; Narita, A.; Fasel, R.; Müllen, K. On-surface synthesis of unsaturated carbon nanostructures with regularly fused pentagon-heptagon pairs. J. Am. Chem. Soc. 2020, 142, 10291–10296.  doi: 10.1021/jacs.0c03635

    24. [24]

      Di Giovannantonio, M.; Urgel, J. I.; Beser, U.; Yakutovich, A. V.; Wilhelm, J.; Pignedoli, C. A.; Ruffieux, P.; Narita, A.; Mullen, K.; Fasel, R. On-surface synthesis of indenofluorene polymers by oxidative five-membered ring formation. J. Am. Chem. Soc. 2018, 140, 3532–3536.  doi: 10.1021/jacs.8b00587

    25. [25]

      Majzik, Z.; Pavlicek, N.; Vilas-Varela, M.; Perez, D.; Moll, N.; Guitian, E.; Meyer, G.; Pena, D.; Gross, L. Studying an antiaromatic polycyclic hydrocarbon adsorbed on different surfaces. Nat. Commun. 2018, 9, 1198.  doi: 10.1038/s41467-018-03368-9

    26. [26]

      Riss, A.; Wickenburg, S.; Gorman, P.; Tan, L. Z.; Tsai, H. Z.; de Oteyza, D. G.; Chen, Y. C.; Bradley, A. J.; Ugeda, M. M.; Etkin, G.; Louie, S. G.; Fischer, F. R.; Crommie, M. F. Local electronic and chemical structure of oligo-acetylene derivatives formed through radical cyclizations at a surface. Nano. Lett. 2014, 14, 2251–2255.  doi: 10.1021/nl403791q

    27. [27]

      Liu, M. Z.; Liu, M. X.; She, L. M.; Zha, Z. Q.; Pan, J. L.; Li, S. C.; Li, T.; He, Y. Y.; Cai, Z. Y.; Wang, J. B.; Zheng, Y.; Qiu, X. H.; Zhong, D. Y. Graphene-like nanoribbons periodically embedded with four- and eight-membered rings. Nat. Commun. 2017, 8, 14924.  doi: 10.1038/ncomms14924

    28. [28]

      Kawai, S.; Takahashi, K.; Ito, S.; Pawlak, R.; Meier, T.; Spijker, P.; Canova, F. F.; Tracey, J.; Nozaki, K.; Foster, A. S.; Meyer, E. Competing annulene and radialene structures in a single anti-aromatic molecule studied by high-resolution atomic force microscopy. ACS Nano 2017, 11, 8122–8130.  doi: 10.1021/acsnano.7b02973

    29. [29]

      Cho, J.; Smerdon, J.; Gao, L.; Suzer, O.; Guest, J. R.; Guisinger, N. P. Structural and electronic decoupling of c–60 from epitaxial graphene on sic. Nano. Lett. 2012, 12, 3018–3024.  doi: 10.1021/nl3008049

    30. [30]

      Repp, J.; Meyer, G.; Stojkovic, S. M.; Gourdon, A.; Joachim, C. Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 2005, 94, 026803.  doi: 10.1103/PhysRevLett.94.026803

    31. [31]

      Zheng, Y. J.; Huang, Y. L.; Chenp, Y. F.; Zhao, W. J.; Eda, G.; Spataru, C. D.; Zhang, W. J.; Chang, Y. H.; Li, L. J.; Chi, D. Z.; Quek, S. Y.; Wee, A. T. S. Heterointerface screening effects between organic monolayers and monolayer transition metal dichalcogenides. ACS Nano 2016, 10, 2476–2484.  doi: 10.1021/acsnano.5b07314

    32. [32]

      Liu, Z. H.; Sun, K. W.; Li, X. C.; Li, L.; Zhang, H. M.; Chi, L. F. Electronic decoupling of organic layers by a self-assembled supramolecular network on au(111). J. Phys. Chem. Lett. 2019, 10, 4297–4302.  doi: 10.1021/acs.jpclett.9b01167

    33. [33]

      Han, P.; Akagi, K.; Canova, F. F.; Mutoh, H.; Shiraki, S.; Iwaya, K.; Weiss, P. S.; Asao, N.; Hitosugi, T. Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity. ACS Nano 2014, 8, 9181–9187.  doi: 10.1021/nn5028642

    34. [34]

      Basagni, A.; Sedona, F.; Pignedoli, C. A.; Cattelan, M.; Nicolas, L.; Casarin, M.; Sambi, M. Molecules-oligomers-nanowires-graphene nanoribbons: a bottom-up stepwise on-surface covalent synthesis preserving long-range order. J. Am. Chem. Soc. 2015, 137, 1802–1808  doi: 10.1021/ja510292b

    35. [35]

      Zhang, Y. F.; Zhang, Y.; Li, G.; Lu, J. C.; Que, Y. D.; Chen, H.; Berger, R.; Feng, X. L.; Mullen, K.; Lin, X.; Zhang, Y. Y.; Du, S. X.; Pantelides, S. T.; Gao, H. J. Sulfur-doped graphene nanoribbons with a sequence of distinct band gaps. Nano Res. 2017, 10, 3377–3384  doi: 10.1007/s12274-017-1550-2

    36. [36]

      Bronner, C.; Leyssner, F.; Stremlau, S.; Utecht, M.; Saalfrank, P.; Klamroth, T.; Tegeder, P. Electronic structure of a subnanometer wide bottom-up fabricated graphene nanoribbon: end states, band gap, and dispersion. Phys. Rev. B 2012, 86, 085444.  doi: 10.1103/PhysRevB.86.085444

    37. [37]

      Kleimeier, N. F.; Timmer, A.; Bignardi, L.; Monig, H.; Feng, X. L.; Mullen, K.; Chi, L. F.; Fuchs, H.; Zacharias, H. Electron dynamics in unoccupied states of spatially aligned 7-a graphene nanoribbons on au(788). Phys. Rev. B 2014, 90, 245408.  doi: 10.1103/PhysRevB.90.245408

    38. [38]

      Linden, S.; Zhong, D.; Timmer, A.; Aghdassi, N.; Franke, J. H.; Zhang, H.; Feng, X.; Mullen, K.; Fuchs, H.; Chi, L.; Zacharias, H. Electronic structure of spatially aligned graphene nanoribbons on au(788). Phys. Rev. Lett. 2012, 108, 216801.  doi: 10.1103/PhysRevLett.108.216801

    39. [39]

      Chen, Y. C.; Cao, T.; Chen, C.; Pedramrazi, Z.; Haberer, D.; de Oteyza, D. G.; Fischer, F. R.; Louie, S. G.; Crommie, M. F. Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions. Nat. Nanotech. 2015, 10, 156–160.  doi: 10.1038/nnano.2014.307

    40. [40]

      Mishra, S.; Lohr, T. G.; Pignedoli, C. A.; Liu, J. Z.; Berger, R.; Urgel, J. I.; Mullen, K.; Feng, X. L.; Ruffieux, P.; Fasel, R. Tailoring bond topologies in open-shell graphene nanostructures. ACS Nano 2018, 12, 11917–11927.  doi: 10.1021/acsnano.8b07225

    41. [41]

      Mishra, S.; Beyer, D.; Berger, R.; Liu, J. Z.; Groning, O.; Urgel, J. I.; Mullen, K.; Ruffieux, P.; Feng, X. L.; Fasel, R. Topological defect-induced magnetism in a nanographene. J. Am. Chem. Soc. 2020, 142, 1147–1152.  doi: 10.1021/jacs.9b09212

    42. [42]

      Merino-Diez, N.; Garcia-Lekue, A.; Carbonell-Sanroma, E.; Li, J. C.; Corso, M.; Colazzo, L.; Sedona, F.; Sanchez-Portal, D.; Pascual, J. I.; de Oteyza, D. G. Width-dependent band gap in armchair graphene nanoribbons reveals fermi level pinning on au(111). ACS Nano 2017, 11, 11661–11668.  doi: 10.1021/acsnano.7b06765

    43. [43]

      Ruffieux, P.; Cai, J. M.; Plumb, N. C.; Patthey, L.; Prezzi, D.; Ferretti, A.; Molinari, E.; Feng, X. L.; Mullen, K.; Pignedoli, C. A.; Fasel, R. Electronic structure of atomically precise graphene nanoribbons. ACS Nano 2012, 6, 6930–6935.  doi: 10.1021/nn3021376

    44. [44]

      Huang, H.; Chen, S.; Gao, X. Y.; Chen, W.; Wee, A. T. S. Structural and electronic properties of ptcda thin films on epitaxial graphene. ACS Nano 2009, 3, 3431–3436.  doi: 10.1021/nn9008615

    45. [45]

      Liu, L. W.; Dienel, T.; Widmer, R.; Groning, O. Interplay between energy-level position and charging effect of manganese phthalocyanines on an atomically thin insulator. ACS Nano 2015, 9, 10125–10132.  doi: 10.1021/acsnano.5b03741

    46. [46]

      Wang, S. Y.; Talirz, L.; Pignedoli, C. A.; Feng, X. L.; Mullen, K.; Fasel, R.; Ruffieux, P. Giant edge state splitting at atomically precise graphene zigzag edges. Nat. Commun. 2016, 7, 11507.  doi: 10.1038/ncomms11507

    47. [47]

      Yamaguchi, J.; Hayashi, H.; Jippo, H.; Shiotari, A.; Ohtomo, M.; Sakakura, M.; Hieda, N.; Aratani, N.; Ohfuchi, M.; Sugimoto, Y.; Yamada, H.; Sato, S. Small bandgap in atomically precise 17-atom-wide armchair-edged graphene nanoribbons. Commun. Mater. 2020, 1, DOI 10.1038/s43246-020-0039-9.  doi: 10.1038/s43246-020-0039-9

    48. [48]

      Sakaguchi, H.; Kawagoe, Y.; Hirano, Y.; Iruka, T.; Yano, M.; Nakae, T. Width-controlled sub-nanometer graphene nanoribbon films synthesized by radical-polymerized chemical vapor deposition. Adv. Mater. 2014, 26, 4134–4138.  doi: 10.1002/adma.201305034

    49. [49]

      Narita, A.; Chen, Z. P.; Chen, Q.; Mullen, K. Solution and on-surface synthesis of structurally defined graphene nanoribbons as a new family of semiconductors. Chem. Sci. 2019, 10, 964–975.  doi: 10.1039/C8SC03780A

    50. [50]

      Sakaguchi, H.; Song, S. T.; Kojima, T.; Nakae, T. Homochiral polymerization-driven selective growth of graphene nanoribbons. Nat. Chem. 2017, 9, 57–63.  doi: 10.1038/nchem.2614

    51. [51]

      Song, S. T.; Kojima, T.; Nakae, T.; Sakaguchi, H. Wide graphene nanoribbons produced by interchain fusion of poly(p-phenylene) via two-zone chemical vapor deposition. Chem. Commun. 2017, 53, 7034–7036.  doi: 10.1039/C7CC02849K

    52. [52]

      Bennett, P. B.; Pedramrazi, Z.; Madani, A.; Chen, Y. C.; de Oteyza, D. G.; Chen, C.; Fischer, F. R.; Crommie, M. F.; Bokor, J. Bottom-up graphene nanoribbon field-effect transistors. Appl. Phys. Lett. 2013, 103, 253114.  doi: 10.1063/1.4855116

    53. [53]

      Chen, Z. P.; Zhang, W.; Palma, C. A.; Rizzini, A. L.; Liu, B. L.; Abbas, A.; Richter, N.; Martini, L.; Wang, X. Y.; Cavani, N.; Lu, H.; Mishra, N.; Coletti, C.; Berger, R.; Klappenberger, F.; Klaui, M.; Candini, A.; Affronte, M.; Zhou, C. W.; De Renzi, V.; del Pennino, U.; Barth, J. V.; Rader, H. J.; Narita, A.; Feng, X. L.; Mullen, K. Synthesis of graphene nanoribbons by ambient-pressure chemical vapor deposition and device integration. J. Am. Chem. Soc. 2016, 138, 15488–15496.  doi: 10.1021/jacs.6b10374

    54. [54]

      Kojima, T.; Bao, Y.; Zhang, C.; Liu, S. L.; Xu, H.; Nakae, T.; Loh, K. P.; Sakaguchi, H. Orientation and electronic structures of multilayered graphene nanoribbons produced by two-zone chemical vapor deposition. Langmuir 2017, 33, 10439–10445.  doi: 10.1021/acs.langmuir.7b01862

    55. [55]

      Ohtomo, M.; Sekine, Y.; Hibino, H.; Yamamoto, H. Graphene nanoribbon field-effect transistors fabricated by etchant-free transfer from au(788). Appl. Phys. Lett. 2018, 112, 021602.  doi: 10.1063/1.5006984

    56. [56]

      Liu, Y.; Wang, X. Z.; Dong, Y. F.; Wang, Z. Y.; Zhao, Z. B.; Qiu, J. S. Nitrogen-doped graphene nanoribbons for high-performance lithium ion batteries. J. Mater. Chem. A 2014, 2, 16832–16835.  doi: 10.1039/C4TA03531C

    57. [57]

      Liu, M. K.; Song, Y. F.; He, S. X.; Tjiu, W. W.; Pan, J. S.; Xia, Y. Y.; Liu, T. X. Nitrogen-doped graphene nanoribbons as efficient metal-free electrocatalysts for oxygen reduction. Acs Appl. Mater. Inter. 2014, 6, 4214–4222.  doi: 10.1021/am405900r

  • 加载中
    1. [1]

      Yu HeHao JiangShaoxuan YuanJiayi LuQiang Sun . On-surface photo-induced dechlorination. Chinese Chemical Letters, 2024, 35(9): 109807-. doi: 10.1016/j.cclet.2024.109807

    2. [2]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    3. [3]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    4. [4]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    5. [5]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    6. [6]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    7. [7]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    8. [8]

      Ying-Di HaoZhi-Qian LinXiao-Yu GuoJiao LiangCan-Kun LuoQian-Tao WangLi GuoYong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834

    9. [9]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    10. [10]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    11. [11]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    12. [12]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    13. [13]

      Yukai TongZhijun WuBo ZhouMin HuAnpei Ye . Surface tension of single suspended aerosol microdroplets. Chinese Chemical Letters, 2024, 35(4): 109062-. doi: 10.1016/j.cclet.2023.109062

    14. [14]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

    15. [15]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    16. [16]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    17. [17]

      Shu LinKezhen Qi . Phase-dependent lithium-alloying reactions for lithium-metal batteries. Chinese Chemical Letters, 2024, 35(4): 109431-. doi: 10.1016/j.cclet.2023.109431

    18. [18]

      Xiao-Ya YuanCong-Cong WangBing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517

    19. [19]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    20. [20]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

Metrics
  • PDF Downloads(1)
  • Abstract views(184)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return