Citation: Yue-Jiao ZHANG, Petar M RADJENOVIC, Jian-Feng LI. Shell-isolated Nanoparticle-enhanced Raman Spectroscopy towards In-Situ Investigating of Interfacial Structure[J]. Chinese Journal of Structural Chemistry, ;2020, 39(8): 1372-1376. doi: 10.14102/j.cnki.0254–5861.2011–2918 shu

Shell-isolated Nanoparticle-enhanced Raman Spectroscopy towards In-Situ Investigating of Interfacial Structure

  • Corresponding author: Jian-Feng LI, li@xmu.edu.cn
  • Received Date: 23 June 2020
    Accepted Date: 15 July 2020

    Fund Project: the National Natural Science Foundation of China 21925404the National Natural Science Foundation of China 21775127Science and Technology Planning Project of Fujian Province 2019Y4001

Figures(3)

  • Since the discovery of surface-enhanced Raman spectroscopy (SERS), it has been rapidly applied to the in situ study of electrochemical interfaces. Shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) stands out as one of the most powerful tools for the in situ study of interfacial structures, especially on well-defined single crystal surface. This perspective paper focuses on the study of interfacial structures with the SHINERS technique, including the electronic structure of heterogeneous metal surfaces, and the detection of molecules absorbed on the surface, as well as intermediate species, during electrochemical reactions. Finally, we present an outlook on future research and development of SHINERS for studying interfacial structures.
  • 加载中
    1. [1]

      Hoshi, N.; Suzuki, T.; Hori, Y. Step density dependence of CO2 reduction rate on Pt(S)-[n(111) × (111)] single crystal electrodes. Electrochim. Acta 1996, 41, 1647–1653.  doi: 10.1016/0013-4686(95)00418-1

    2. [2]

      Maciá, M. D.; Campiña, J. M.; Herrero, E.; Feliu, J. M. On the kinetics of oxygen reduction on platinum stepped surfaces in acidic media. J. Electroanal. Chem. 2004, 564, 141–150.  doi: 10.1016/j.jelechem.2003.09.035

    3. [3]

      Schouten, K. J. P.; Qin, Z.; Pérez Gallent, E.; Koper, M. T. M. Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J. Am. Chem. Soc. 2012, 134, 9864–9867.  doi: 10.1021/ja302668n

    4. [4]

      Gong, J.; Bao, X. Fundamental insights into interfacial catalysis. Chem. Soc. Rev. 2017, 46, 1770–1771.  doi: 10.1039/C7CS90022H

    5. [5]

      Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166.  doi: 10.1016/0009-2614(74)85388-1

    6. [6]

      Jeanmaire, D. L.; Van Duyne, R. P. Surface Raman spectroelectrochemistry. J. Electroanal. Chem. 1977, 84, 1–20.  doi: 10.1016/S0022-0728(77)80224-6

    7. [7]

      Li, J. F.; Zhang, Y. J.; Ding, S. Y.; Panneerselvam, R.; Tian, Z. Q. Core-shell nanoparticle-enhanced Raman spectroscopy. Chem. Rev. 2017, 117, 5002–5069.  doi: 10.1021/acs.chemrev.6b00596

    8. [8]

      Wu, D. Y.; Li, J. F.; Ren, B.; Tian, Z. Q. Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chem. Soc. Rev. 2008, 37, 1025–1041.  doi: 10.1039/b707872m

    9. [9]

      Lal, S.; Grady, N. K.; Kundu, J.; Levin, C. S.; Lassiter, J. B.; Halas, N. J. Tailoring plasmonic substrates for surface enhanced spectroscopies. Chem. Soc. Rev. 2008, 37, 898–911.  doi: 10.1039/b705969h

    10. [10]

      Lei, J.; Ju, H. Signal amplification using functional nanomaterials for biosensing. Chem. Soc. Rev. 2012, 41, 2122–2134.  doi: 10.1039/c1cs15274b

    11. [11]

      Wang, Y.; Yan, B.; Chen, L. Tags: novel optical nanoprobes for bioanalysis. Chem. Rev. 2013, 113, 1391–1428.  doi: 10.1021/cr300120g

    12. [12]

      Lane, L. A.; Qian, X. M.; Nie, S. M. SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging. Chem. Rev. 2015, 115, 10489–10529.  doi: 10.1021/acs.chemrev.5b00265

    13. [13]

      Tian, Z. Q.; Ren, B.; Li, J. F.; Yang, Z. L. Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. Chem. Commun. 2007, 3514–3534.

    14. [14]

      Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y.; Ren, B.; Wang, Z. L.; Tian, Z. Q. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464, 392–395.  doi: 10.1038/nature08907

    15. [15]

      Zhang, H.; Duan, S.; Radjenovic, P. M.; Tian, Z. Q.; Li, J. F. Core-shell nanostructure-enhanced Raman spectroscopy for surface catalysis. Acc. Chem. Res. 2020, 53, 729–739.  doi: 10.1021/acs.accounts.9b00545

    16. [16]

      Fang, P. P.; Lu, X. H.; Liu, H.; Tong, Y. X. Applications of shell-isolated nanoparticles in surface-enhanced Raman spectroscopy and fluorescence. Trac-Trend. Anal. Chem. 2015, 66, 103–117.  doi: 10.1016/j.trac.2014.11.015

    17. [17]

      Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909–913.  doi: 10.1038/nmat1752

    18. [18]

      Housmans, T. H. M.; Wonders, A. H.; Koper, M. T. M. Structure sensitivity of methanol electrooxidation pathways on platinum: an on-line electrochemical mass spectrometry study. J. Phys. Chem. B 2006, 110, 10021–10031.  doi: 10.1021/jp055949s

    19. [19]

      Christensen, C. H.; Nørskov, J. K. A molecular view of heterogeneous catalysis. J. Chem. Phys. 2008, 128, 182503.  doi: 10.1063/1.2839299

    20. [20]

      Zhang, Y. J.; Li, S. B.; Duan, S.; Lu, B. A.; Yang, J.; Panneerselvam, R.; Li, C. Y.; Fang, P. P.; Zhou, Z. Y.; Phillips, D. L.; Li, J. F.; Tian, Z. Q. Probing the electronic structure of heterogeneous metal interfaces by transition metal shelled gold nanoparticle-enhanced Raman spectroscopy. J. Phys. Chem. C 2016, 120, 20684–20691.  doi: 10.1021/acs.jpcc.6b01879

    21. [21]

      Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G.; Ross, P. N.; Lucas, C. A.; Marković, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.  doi: 10.1126/science.1135941

    22. [22]

      Li, J. F.; Zhang, Y. J.; Rudnev, A. V.; Anema, J. R.; Li, S. B.; Hong, W. J.; Rajapandiyan, P.; Lipkowski, J.; Wandlowski, T.; Tian, Z. Q. Electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy: correlating structural information and adsorption processes of pyridine at the Au(hkl) single crystal/solution interface. J. Am. Chem. Soc. 2015, 137, 2400–2408.  doi: 10.1021/ja513263j

    23. [23]

      Wen, B. Y.; Jin, X.; Li, Y.; Wang, Y. H.; Li, C. Y.; Liang, M. M.; Panneerselvam, R.; Xu, Q. C.; Wu, D. Y.; Yang, Z. L.; Li, J. F.; Tian, Z. Q. Shell-isolated nanoparticle-enhanced Raman spectroscopy study of the adsorption behaviour of DNA bases on Au(111) electrode surfaces. Analyst 2016, 141, 3731–3736.  doi: 10.1039/C6AN00180G

    24. [24]

      Zhang, S. P.; Lin, J. S.; Lin, R. K.; Radjenovic, P. M.; Yang, W. M.; Xu, J.; Dong, J. C.; Yang, Z. L.; Hang, W.; Tian, Z. Q.; Li, J. F. In situ Raman study of the photoinduced behavior of dye molecules on TiO2(hkl) single crystal surfaces. Chem. Sci. 2020, 11, 6431–6435.  doi: 10.1039/D0SC00588F

    25. [25]

      Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.  doi: 10.1021/jp047349j

    26. [26]

      Ledezma-Yanez, I.; Wallace, W. D. Z.; Sebastián-Pascual, P.; Climent, V.; Feliu, J. M.; Koper, M. T. M. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2017, 2, 17031.  doi: 10.1038/nenergy.2017.31

    27. [27]

      Li, C. Y.; Le, J. B.; Wang, Y. H.; Chen, S.; Yang, Z. L.; Li, J. F.; Cheng, J.; Tian, Z. Q. In situ probing electrified interfacial water structures at atomically flat surfaces. Nat. Mater. 2019, 18, 697–701.  doi: 10.1038/s41563-019-0356-x

    28. [28]

      Wang, J.; Dong, J. C.; Yang, J.; Wang, Y.; Zhang, C. J.; Xu, M. M.; Mao, B. W.; Yao, J. L.; Li, J. F.; Tian, Z. Q. In situ SERS and SHINERS study of electrochemical hydrogenation of p-ethynylaniline in nonaqueous solvents. Electrochem. Commun. 2017, 78, 16–20.  doi: 10.1016/j.elecom.2017.03.015

    29. [29]

      Dong, J. C.; Zhang, X. G.; Briega-Martos, V.; Jin, X.; Yang, J.; Chen, S.; Yang, Z. L.; Wu, D. Y.; Feliu, J. M.; Williams, C. T.; Tian, Z. Q.; Li, J. F. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 2018, 4, 60–67.  doi: 10.1038/s41560-018-0292-z

    30. [30]

      Bodappa, N.; Su, M.; Zhao, Y.; Le, J. B.; Yang, W. M.; Radjenovic, P.; Dong, J. C.; Cheng, J.; Tian, Z. Q.; Li, J. F. Early stages of electrochemical oxidation of Cu(111) and polycrystalline Cu surfaces revealed by in situ Raman spectroscopy. J. Am. Chem. Soc. 2019, 141, 12192–12196.  doi: 10.1021/jacs.9b04638

    31. [31]

      Wang, Y. H.; Wei, J.; Radjenovic, P.; Tian, Z. Q.; Li, J. F. In situ analysis of surface catalytic reactions using shell-isolated nanoparticle-enhanced Raman spectroscopy. Anal. Chem. 2019, 91, 1675–1685.  doi: 10.1021/acs.analchem.8b05499

    32. [32]

      Dong, J. C.; Su, M.; Briega-Martos, V.; Li, L.; Le, J. B.; Radjenovic, P.; Zhou, X. S.; Feliu, J. M.; Tian, Z. Q.; Li, J. F. Direct in situ Raman spectroscopic evidence of oxygen reduction reaction intermediates at high-index Pt(hkl) surfaces. J. Am. Chem. Soc. 2020, 142, 715–719.  doi: 10.1021/jacs.9b12803

  • 加载中
    1. [1]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    2. [2]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    3. [3]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    4. [4]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    5. [5]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    6. [6]

      Yan-Li LiZhi-Ming LiKai-Kai WangXiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322

    7. [7]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    8. [8]

      Bei Li Zhaoke Zheng . In situ monitoring of the spatial distribution of oxygen vacancies at the single-particle level. Chinese Journal of Structural Chemistry, 2024, 43(10): 100331-100331. doi: 10.1016/j.cjsc.2024.100331

    9. [9]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    10. [10]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    11. [11]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    12. [12]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

    13. [13]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    14. [14]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    15. [15]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    16. [16]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    17. [17]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

    18. [18]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    19. [19]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

    20. [20]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

Metrics
  • PDF Downloads(1)
  • Abstract views(174)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return