Synthesis, Characterization, Biological and Docking Simulations of 4-(Benzylideneamino) Benzoic Acids
- Corresponding author: Saeed AAMER, aamersaeed@yahoo.com
Citation:
Aziz HAMID, Saeed AAMER, Jabeen FARUKH, Basit ABDUL, Zia Qureshi IRFAN, Aziz ABDUL, Haroon ATIF, Ur Rehman ASHFAQ. Synthesis, Characterization, Biological and Docking Simulations of 4-(Benzylideneamino) Benzoic Acids[J]. Chinese Journal of Structural Chemistry,
;2021, 40(3): 291-300.
doi:
10.14102/j.cnki.0254–5861.2011–2871
Upadhyay, R. K. Anti-arthritic potential of plant natural products; its use in joint pain medications and anti-inflammatory drug formulations. Int. J. Green Pharm. 2016, 10, S120−S130.
Puranik, N. V.; Puntambekar, H. M.; Srivastava, P. Antidiabetic potential and enzyme kinetics of benzothiazole derivatives and their non-bonded interactions with α-glucosidase and α-amylase. Med. Chem. Res. 2016, 25, 805−816.
doi: 10.1007/s00044-016-1520-3
Gin, H.; Rigalleau, V. Post-prandial hyperglycemia. Post-prandial hyperglycemia and diabetes. Diabetes. Metab. 2000, 26, 265−272.
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014, S81−90.
Schiff, H. The syntheses and characterization of Schiff base. Ann. Chem. Suppl 3 1864, 343−349.
da Silva, C. M.; da Silva, D. L.; Modolo, L. V.; Alves, R. B.; de Resende, M. A.; Martins, C. V.; de Fátima, Â. Schiff bases: a short review of their antimicrobial activities. J. Adv. Res. 2011, 2, 1−8.
doi: 10.1016/j.jare.2010.05.004
Chakraborti, A. K.; Bhagat, S.; Rudrawar, S. Magnesium perchlorate as an efficient catalyst for the synthesis of imines and phenylhydrazones. Tetrahedron Lett. 2004, 45, 7641−7644.
doi: 10.1016/j.tetlet.2004.08.097
Küçükgüzel, G.; Kocatepe, A.; De Clercq, E.; Şahin, F.; Güllüce, M. Synthesis and biological activity of 4-thiazolidinones, thiosemicarbazides derived from diflunisal hydrazide. Eur. J. Med. 2006, 41, 353−359.
doi: 10.1016/j.ejmech.2005.11.005
Kalsi, R.; Shrimali, M.; Bhalla, T. N.; Barthwal, J. P. Synthesis and anti-inflammatory activity of indolyl azetidinones. Indian J. Pharm. Sci. 1990, 52, 129−134.
Hameed, A.; al-Rashida, M.; Uroos, M.; Abid, A. S.; Khan, K. M. Schiff bases in medicinal chemistry: a patent review (2010-2015). Expert Opin. Ther. Pat. 2017, 27, 63−79.
doi: 10.1080/13543776.2017.1252752
Hu, G. Q.; Wu, X. K.; Wang, G. Q.; Duan, N. N.; Wen, X. Y.; Cao, T. Y.; Jun, Y.; Wei, W.; Xie, S. Q.; Huang, W. L. Synthesis and antitumor and antibacterial evaluation of fluoro-quinolone derivatives (III): mono- and bis-Schiff-bases. Chin. Chem. Lett. 2012, 23, 515−517.
doi: 10.1016/j.cclet.2012.01.029
Ren, S.; Wang, R.; Komatsu, K.; Bonaz-Krause, P.; Zyrianov, Y.; McKenna, C. E.; Csipke, C.; Tokes, Z. A.; Lien, E. J. Synthesis, biological evaluation, and quantitative structure-activity relationship analysis of new Schiff bases of hydroxysemicarbazide as potential antitumor agents. J. Med. Chem. 2002, 45, 410−419.
doi: 10.1021/jm010252q
Hearn, M. J.; Cynamon, M. H. Design and synthesis of antituberculars: preparation and evaluation against mycobacterium tuberculosis of an isoniazid Schiff base. J. Antimicrob. Chemother. 2004, 53, 185−191.
doi: 10.1093/jac/dkh041
Silva, C. D.; Silva, D. D.; Modolo, L. V.; Alves, R. B.; Resende, M. D.; Martins, C. V.; Fatima, A. D. Schiff bases: a short review of their antimicrobial activities. J. Adv. Res. 2011, 2, 1−8.
doi: 10.1016/j.jare.2010.05.004
Murtaza, S.; Akhtar, M. S.; Kanwal, F.; Abbas, A.; Ashiq, S.; Shamim, S. Synthesis and biological evaluation of schiff bases of 4-aminophenazone as an anti-inflammatory, analgesic and antipyretic agent. J. Saudi Chem. Soc. 2017, 21, S359−S372.
doi: 10.1016/j.jscs.2014.04.003
Sztanke, K.; Maziarka, A.; Osinka, A.; Sztanke, M. An insight into synthetic Schiff bases revealing antiproliferative activities in vitro. Bioorg. Med. Chem. 2013, 21, 3648−3666.
doi: 10.1016/j.bmc.2013.04.037
Rauf, A.; Shah, A.; Munawar, K. S.; Khan, A. A.; Abbasi, R.; Yameen, M. A.; Khan, A. M.; Khan, A. R.; Qureshi, I. Z.; Kraatz, H. B. Synthesis, spectroscopic characterization, DFT optimization and biological activities of Schiff bases and their metal(II) complexes. J. Mol. Struct. 2017, 1145, 132−140.
doi: 10.1016/j.molstruc.2017.05.098
Zhao, F.; Liu, Z. Q. The protective effect of hydroxyl-substituted Schiff bases on the radical-induced oxidation of DNA. J. Phys. Org. Chem. 2009, 22, 791−798.
doi: 10.1002/poc.1517
Heck, M.; Schädel, S. A.; Maretzki, D.; Bartl, F. J.; Ritter, E.; Palczewski, K.; Hofmann, K. P. Signaling states of rhodopsin formation of the storage form, metarhodopsin III, from active metarhodopsin II. J. Biol. Chem. 2003, 278, 3162−3169.
doi: 10.1074/jbc.M209675200
Soderberg, T. Organic Chemistry with a Biological Emphasis Volume I. Chemistry Publications 2016.
Naderi, E.; Ehteshamzadeh, M.; Jafari, A. H.; Hosseini, M. G. Effect of carbon steel microstructure and molecular structure of two new Schiff base compounds on inhibition performance in 1M HCl solution by DC, SEM and XRD studies. Mater. Chem. Phys. 2010, 120, 134−141.
doi: 10.1016/j.matchemphys.2009.10.036
Khuhawar, M. Y.; Mughal, M. A.; Channar, A. H. Synthesis and characterization of some new Schiff base polymers. Eur. Polym. J. 2004, 40, 805−809.
doi: 10.1016/j.eurpolymj.2003.11.020
Rakesh, K. P.; Manukumar, H. M.; Gowda, D. C. Schiff's bases of quinazolinone derivatives: synthesis and SAR studies of a novel series of potential anti-inflammatory and antioxidants. Bioorg. Med. Chem. Lett. 2015, 25, 1072−1077.
doi: 10.1016/j.bmcl.2015.01.010
Kumar, D.; Rawat, D. S. Synthesis and antioxidant activity of thymol and carvacrol based Schiff bases. Bioorg. Med. Chem. 2013, 23, 641−645.
doi: 10.1016/j.bmcl.2012.12.001
Khan, K. M.; Khan, M.; Ali, M.; Taha, M.; Rasheed, S.; Perveen, S.; Choudhary, M. I. Synthesis of bis-Schiff bases of isatins and their antiglycation activity. Bioorg. Med. Chem. 2009, 17, 7795−7801.
doi: 10.1016/j.bmc.2009.09.028
Vančo, J.; Marek, J.; Trávníček, Z.; Račanská, E.; Muselík, J.; Švajlenová, O. G. Synthesis, structural characterization, antiradical and antidiabetic activities of copper(II) and zinc(II) Schiff base complexes derived from salicylaldehyde and β-alanine. J. Inorg. Biochem. 2008, 102, 595−605.
doi: 10.1016/j.jinorgbio.2007.10.003
Kia, R.; Kargar, H. Crystal structure, spectroscopic characterization, and computational study of two new 4-aminobenzoic acid derived Schiff base ligands. Sci. Iran. Trans. C, Chem. Chem. Eng. 2015, 22, 2298−2308.
Rauf, A.; Shah, A.; Khan, A. A.; Shah, A. H.; Abbasi, R.; Qureshi, I. Z.; Ali, S. Synthesis, pH dependent photometric and electrochemical investigation, redox mechanism and biological applications of novel Schiff base and its metallic derivatives. Spectrochim. Acta Part A: Mol. Biomol. Spectr. 2017, 176, 155−167.
doi: 10.1016/j.saa.2017.01.018
Meotti, F. C.; Borges, V. C.; Zeni, G.; Rocha, J. B.; Nogueira, C. W. Potential renal and hepatic toxicity of diphenyl diselenide, diphenyl ditelluride and Ebselen for rats and mice. Toxicol. Lett. 2003, 143, 9−16.
doi: 10.1016/S0378-4274(03)00090-0
Mehmood, S.; Rehman, M. A.; Ismail, H.; Mirza, B.; Bhatti, A. S. Significance of postgrowth processing of ZnO nanostructures on antibacterial activity against gram-positive and gram-negative bacteria. Int. J. Nanomed. 2015, 10, 4521−4533.
Molecular Operating Environment (MOE), 2016.08; Chemical Computing Group Inc., 1010 Sherbrooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7 2016.
Vicens, Q.; Westhof, E. Crystal structure of paromomycin docked into the eubacterial ribosomal decoding A site. Structure 2001, 9, 647−658.
doi: 10.1016/S0969-2126(01)00629-3
Rehman, A. U.; Khan, M. T.; Liu, H.; Wadood, A.; Malik, S. I.; Chen, H. F. Exploring the pyrazinamide drug resistance mechanism of clinical mutants T370p and W403g in ribosomal protein S1 of mycobacterium tuberculosis. J. Chem. Inf. Model. 2019, 59, 1584−1597.
doi: 10.1021/acs.jcim.8b00956
Rehman, A. U.; Rafiq, H.; Rahman, M. U.; Li, J.; Liu, H.; Luo, S.; Arshad, T.; Wadood, A.; Chen, H. F. Gain-of-function SHP2 E76Q mutant recusing autoinhibition mechanism associated with juvenile myelomonocytic leukemia. J. Chem. Inf. Model. 2019, 59, 3229−3239.
doi: 10.1021/acs.jcim.9b00353
Xu Zhang , Jiang Li , Kai-Zhou Lu , Ya-Nan Yang , Jian-Shuang Jiang , Xiang Yuan , Zi-Ming Feng , Fei Ye , Pei-Cheng Zhang . Neosophoflavonoids A–C, A class of highly oxidized hybrid flavonoids from Sophora flavescens with antidiabetic effects. Chinese Chemical Letters, 2024, 35(10): 109456-. doi: 10.1016/j.cclet.2023.109456
Lili Zhang , Hui Gao , Gong Zhang , Yuning Dong , Kai Huang , Zifan Pang , Tuo Wang , Chunlei Pei , Peng Zhang , Jinlong Gong . Cross-section design of the flow channels in membrane electrode assembly electrolyzer for CO2 reduction reaction through numerical simulations. Chinese Chemical Letters, 2025, 36(1): 110204-. doi: 10.1016/j.cclet.2024.110204