Citation: Aziz HAMID, Saeed AAMER, Jabeen FARUKH, Basit ABDUL, Zia Qureshi IRFAN, Aziz ABDUL, Haroon ATIF, Ur Rehman ASHFAQ. Synthesis, Characterization, Biological and Docking Simulations of 4-(Benzylideneamino) Benzoic Acids[J]. Chinese Journal of Structural Chemistry, ;2021, 40(3): 291-300. doi: 10.14102/j.cnki.0254–5861.2011–2871 shu

Synthesis, Characterization, Biological and Docking Simulations of 4-(Benzylideneamino) Benzoic Acids

  • Corresponding author: Saeed AAMER, aamersaeed@yahoo.com
  • Received Date: 9 May 2020
    Accepted Date: 2 December 2020

    Fund Project:

Figures(6)

  • The present research paper presents the synthesis, characterization, biological and computational studies of 4-(benzylideneamino) benzoic acid derivatives (3a~3g). Derivatives 3a~3c displayed best antidiabetic potential with a glucose-lowering effect compared to the reference drug Glibenclamide. Biochemical parameters including plasma glucose, serum triglycerides, cholesterol, alanine amino transferase and aspartate amino transferase levels showed significant alterations in concentrations relative to the control. Similarly, the derivatives 3a, 3d and 3e displayed potent in vitro antibacterial potential. Molecular docking simulations delineated that the ligands and complexes were stabilized at the active site by electrostatic and hydrophobic forces, consistent with the corresponding experimental results. In silico study of the binding pattern predicted that the synthesized ligands, 3d and 3a could serve as a potential surrogate for hit-to-lead generation and the design of novel antibacterial drugs.
  • 加载中
    1. [1]

      Upadhyay, R. K. Anti-arthritic potential of plant natural products; its use in joint pain medications and anti-inflammatory drug formulations. Int. J. Green Pharm. 2016, 10, S120−S130.

    2. [2]

      Puranik, N. V.; Puntambekar, H. M.; Srivastava, P. Antidiabetic potential and enzyme kinetics of benzothiazole derivatives and their non-bonded interactions with α-glucosidase and α-amylase. Med. Chem. Res. 2016, 25, 805−816.  doi: 10.1007/s00044-016-1520-3

    3. [3]

      Gin, H.; Rigalleau, V. Post-prandial hyperglycemia. Post-prandial hyperglycemia and diabetes. Diabetes. Metab. 2000, 26, 265−272.

    4. [4]

      American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014, S81−90.

    5. [5]

      Schiff, H. The syntheses and characterization of Schiff base. Ann. Chem. Suppl 3 1864, 343−349.

    6. [6]

      da Silva, C. M.; da Silva, D. L.; Modolo, L. V.; Alves, R. B.; de Resende, M. A.; Martins, C. V.; de Fátima, Â. Schiff bases: a short review of their antimicrobial activities. J. Adv. Res. 2011, 2, 1−8.  doi: 10.1016/j.jare.2010.05.004

    7. [7]

      Chakraborti, A. K.; Bhagat, S.; Rudrawar, S. Magnesium perchlorate as an efficient catalyst for the synthesis of imines and phenylhydrazones. Tetrahedron Lett. 2004, 45, 7641−7644.  doi: 10.1016/j.tetlet.2004.08.097

    8. [8]

      Küçükgüzel, G.; Kocatepe, A.; De Clercq, E.; Şahin, F.; Güllüce, M. Synthesis and biological activity of 4-thiazolidinones, thiosemicarbazides derived from diflunisal hydrazide. Eur. J. Med. 2006, 41, 353−359.  doi: 10.1016/j.ejmech.2005.11.005

    9. [9]

      Kalsi, R.; Shrimali, M.; Bhalla, T. N.; Barthwal, J. P. Synthesis and anti-inflammatory activity of indolyl azetidinones. Indian J. Pharm. Sci. 1990, 52, 129−134.

    10. [10]

      Hameed, A.; al-Rashida, M.; Uroos, M.; Abid, A. S.; Khan, K. M. Schiff bases in medicinal chemistry: a patent review (2010-2015). Expert Opin. Ther. Pat. 2017, 27, 63−79.  doi: 10.1080/13543776.2017.1252752

    11. [11]

      Hu, G. Q.; Wu, X. K.; Wang, G. Q.; Duan, N. N.; Wen, X. Y.; Cao, T. Y.; Jun, Y.; Wei, W.; Xie, S. Q.; Huang, W. L. Synthesis and antitumor and antibacterial evaluation of fluoro-quinolone derivatives (III): mono- and bis-Schiff-bases. Chin. Chem. Lett. 2012, 23, 515−517.  doi: 10.1016/j.cclet.2012.01.029

    12. [12]

      Ren, S.; Wang, R.; Komatsu, K.; Bonaz-Krause, P.; Zyrianov, Y.; McKenna, C. E.; Csipke, C.; Tokes, Z. A.; Lien, E. J. Synthesis, biological evaluation, and quantitative structure-activity relationship analysis of new Schiff bases of hydroxysemicarbazide as potential antitumor agents. J. Med. Chem. 2002, 45, 410−419.  doi: 10.1021/jm010252q

    13. [13]

      Hearn, M. J.; Cynamon, M. H. Design and synthesis of antituberculars: preparation and evaluation against mycobacterium tuberculosis of an isoniazid Schiff base. J. Antimicrob. Chemother. 2004, 53, 185−191.  doi: 10.1093/jac/dkh041

    14. [14]

      Silva, C. D.; Silva, D. D.; Modolo, L. V.; Alves, R. B.; Resende, M. D.; Martins, C. V.; Fatima, A. D. Schiff bases: a short review of their antimicrobial activities. J. Adv. Res. 2011, 2, 1−8.  doi: 10.1016/j.jare.2010.05.004

    15. [15]

      Murtaza, S.; Akhtar, M. S.; Kanwal, F.; Abbas, A.; Ashiq, S.; Shamim, S. Synthesis and biological evaluation of schiff bases of 4-aminophenazone as an anti-inflammatory, analgesic and antipyretic agent. J. Saudi Chem. Soc. 2017, 21, S359−S372.  doi: 10.1016/j.jscs.2014.04.003

    16. [16]

      Sztanke, K.; Maziarka, A.; Osinka, A.; Sztanke, M. An insight into synthetic Schiff bases revealing antiproliferative activities in vitro. Bioorg. Med. Chem. 2013, 21, 3648−3666.  doi: 10.1016/j.bmc.2013.04.037

    17. [17]

      Rauf, A.; Shah, A.; Munawar, K. S.; Khan, A. A.; Abbasi, R.; Yameen, M. A.; Khan, A. M.; Khan, A. R.; Qureshi, I. Z.; Kraatz, H. B. Synthesis, spectroscopic characterization, DFT optimization and biological activities of Schiff bases and their metal(II) complexes. J. Mol. Struct. 2017, 1145, 132−140.  doi: 10.1016/j.molstruc.2017.05.098

    18. [18]

      Zhao, F.; Liu, Z. Q. The protective effect of hydroxyl-substituted Schiff bases on the radical-induced oxidation of DNA. J. Phys. Org. Chem. 2009, 22, 791−798.  doi: 10.1002/poc.1517

    19. [19]

      Heck, M.; Schädel, S. A.; Maretzki, D.; Bartl, F. J.; Ritter, E.; Palczewski, K.; Hofmann, K. P. Signaling states of rhodopsin formation of the storage form, metarhodopsin III, from active metarhodopsin II. J. Biol. Chem. 2003, 278, 3162−3169.  doi: 10.1074/jbc.M209675200

    20. [20]

      Soderberg, T. Organic Chemistry with a Biological Emphasis Volume I. Chemistry Publications 2016.

    21. [21]

      Naderi, E.; Ehteshamzadeh, M.; Jafari, A. H.; Hosseini, M. G. Effect of carbon steel microstructure and molecular structure of two new Schiff base compounds on inhibition performance in 1M HCl solution by DC, SEM and XRD studies. Mater. Chem. Phys. 2010, 120, 134−141.  doi: 10.1016/j.matchemphys.2009.10.036

    22. [22]

      Khuhawar, M. Y.; Mughal, M. A.; Channar, A. H. Synthesis and characterization of some new Schiff base polymers. Eur. Polym. J. 2004, 40, 805−809.  doi: 10.1016/j.eurpolymj.2003.11.020

    23. [23]

      Rakesh, K. P.; Manukumar, H. M.; Gowda, D. C. Schiff's bases of quinazolinone derivatives: synthesis and SAR studies of a novel series of potential anti-inflammatory and antioxidants. Bioorg. Med. Chem. Lett. 2015, 25, 1072−1077.  doi: 10.1016/j.bmcl.2015.01.010

    24. [24]

      Kumar, D.; Rawat, D. S. Synthesis and antioxidant activity of thymol and carvacrol based Schiff bases. Bioorg. Med. Chem. 2013, 23, 641−645.  doi: 10.1016/j.bmcl.2012.12.001

    25. [25]

      Khan, K. M.; Khan, M.; Ali, M.; Taha, M.; Rasheed, S.; Perveen, S.; Choudhary, M. I. Synthesis of bis-Schiff bases of isatins and their antiglycation activity. Bioorg. Med. Chem. 2009, 17, 7795−7801.  doi: 10.1016/j.bmc.2009.09.028

    26. [26]

      Vančo, J.; Marek, J.; Trávníček, Z.; Račanská, E.; Muselík, J.; Švajlenová, O. G. Synthesis, structural characterization, antiradical and antidiabetic activities of copper(II) and zinc(II) Schiff base complexes derived from salicylaldehyde and β-alanine. J. Inorg. Biochem. 2008, 102, 595−605.  doi: 10.1016/j.jinorgbio.2007.10.003

    27. [27]

      Kia, R.; Kargar, H. Crystal structure, spectroscopic characterization, and computational study of two new 4-aminobenzoic acid derived Schiff base ligands. Sci. Iran. Trans. C, Chem. Chem. Eng. 2015, 22, 2298−2308.

    28. [28]

      Rauf, A.; Shah, A.; Khan, A. A.; Shah, A. H.; Abbasi, R.; Qureshi, I. Z.; Ali, S. Synthesis, pH dependent photometric and electrochemical investigation, redox mechanism and biological applications of novel Schiff base and its metallic derivatives. Spectrochim. Acta Part A: Mol. Biomol. Spectr. 2017, 176, 155−167.  doi: 10.1016/j.saa.2017.01.018

    29. [29]

      Meotti, F. C.; Borges, V. C.; Zeni, G.; Rocha, J. B.; Nogueira, C. W. Potential renal and hepatic toxicity of diphenyl diselenide, diphenyl ditelluride and Ebselen for rats and mice. Toxicol. Lett. 2003, 143, 9−16.  doi: 10.1016/S0378-4274(03)00090-0

    30. [30]

      Mehmood, S.; Rehman, M. A.; Ismail, H.; Mirza, B.; Bhatti, A. S. Significance of postgrowth processing of ZnO nanostructures on antibacterial activity against gram-positive and gram-negative bacteria. Int. J. Nanomed. 2015, 10, 4521−4533.

    31. [31]

      Molecular Operating Environment (MOE), 2016.08; Chemical Computing Group Inc., 1010 Sherbrooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7 2016.

    32. [32]

      Vicens, Q.; Westhof, E. Crystal structure of paromomycin docked into the eubacterial ribosomal decoding A site. Structure 2001, 9, 647−658.  doi: 10.1016/S0969-2126(01)00629-3

    33. [33]

      Rehman, A. U.; Khan, M. T.; Liu, H.; Wadood, A.; Malik, S. I.; Chen, H. F. Exploring the pyrazinamide drug resistance mechanism of clinical mutants T370p and W403g in ribosomal protein S1 of mycobacterium tuberculosis. J. Chem. Inf. Model. 2019, 59, 1584−1597.  doi: 10.1021/acs.jcim.8b00956

    34. [34]

      Rehman, A. U.; Rafiq, H.; Rahman, M. U.; Li, J.; Liu, H.; Luo, S.; Arshad, T.; Wadood, A.; Chen, H. F. Gain-of-function SHP2 E76Q mutant recusing autoinhibition mechanism associated with juvenile myelomonocytic leukemia. J. Chem. Inf. Model. 2019, 59, 3229−3239.  doi: 10.1021/acs.jcim.9b00353

  • 加载中
    1. [1]

      Xu ZhangJiang LiKai-Zhou LuYa-Nan YangJian-Shuang JiangXiang YuanZi-Ming FengFei YePei-Cheng Zhang . Neosophoflavonoids A–C, A class of highly oxidized hybrid flavonoids from Sophora flavescens with antidiabetic effects. Chinese Chemical Letters, 2024, 35(10): 109456-. doi: 10.1016/j.cclet.2023.109456

    2. [2]

      Lili ZhangHui GaoGong ZhangYuning DongKai HuangZifan PangTuo WangChunlei PeiPeng ZhangJinlong Gong . Cross-section design of the flow channels in membrane electrode assembly electrolyzer for CO2 reduction reaction through numerical simulations. Chinese Chemical Letters, 2025, 36(1): 110204-. doi: 10.1016/j.cclet.2024.110204

Metrics
  • PDF Downloads(10)
  • Abstract views(328)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return