Improving the Performance of Thermoelectric Materials by Atomic Layer Deposition-based Grain Boundary Engineering①
- Corresponding author: Yin-Guo XIAO, y.xiao@pku.edu.cn Feng PAN, panfeng@pkusz.edu.cn
Citation: Shuan-Kui LI, Wei-Ming ZHU, Yin-Guo XIAO, Feng PAN. Improving the Performance of Thermoelectric Materials by Atomic Layer Deposition-based Grain Boundary Engineering①[J]. Chinese Journal of Structural Chemistry, ;2020, 39(5): 831-837. doi: 10.14102/j.cnki.0254–5861.2011–2867
Snyder, G. J.; Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114.
doi: 10.1038/nmat2090
Ding, Y.; Qiu, Y.; Cai, K.; Yao, Q.; Chen, S.; Chen, L.; He, J. High performance n-type Ag2Se film on nylon membrane for flexible thermoelectric power generator. Nat. Commun. 2019, 10, 841.
doi: 10.1038/s41467-019-08835-5
Novak, T. G.; Kim, K.; Jeon, S. 2D and 3D Nanostructuring Strategies for Thermoelectric Materials. Nanoscale 2019, 11, 19684–19699.
doi: 10.1039/C9NR07406F
Rodenkirchen, C.; Cagnoni, M.; Jakobs, S.; Cheng, Y.; Keutgen, J.; Yu, Y.; Wuttig, M.; Cojocaru-Mirédin, O. Employing Interfaces with Metavalently Bonded Materials for Phonon Scattering and Control of the Thermal Conductivity in TAGS-x Thermoelectric Materials. Adv. Funct. Mater. 2020, 30, 1910039.
doi: 10.1002/adfm.201910039
Minnich, A. J.; Dresselhaus, M. S.; Ren, Z. F.; Chen, G. Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci. 2009, 2, 466–479.
doi: 10.1039/b822664b
Neophytou, N.; Kosina, H. Optimizing thermoelectric power factor by means of a potential barrier. Journal of Applied Physics 2013, 114, 044315.
doi: 10.1063/1.4816792
Kim, R.; Lundstrom, M. S. Computational study of energy filtering effects in one-dimensional composite nanostructures. Journal of Applied Physics 2012, 111, 024508.
doi: 10.1063/1.3678001
Li, S.; Liu, X.; Liu, Y.; Liu, F.; Luo, J.; Pan, F. Optimized hetero-interfaces by tuning 2D SnS2 thickness in Bi2Te2.7Se0.3/SnS2 nanocomposites to enhance thermoelectric performance. Nano Energy 2017, 39, 297–305.
doi: 10.1016/j.nanoen.2017.07.011
Li, S.; Liu, Y.; Liu, F.; He, D.; He, J.; Luo, J.; Xiao, Y.; Pan, F. Effective atomic interface engineering in Bi2Te2.7Se0.3 thermoelectric material by atomic-layer-deposition approach. Nano Energy 2018, 49, 257–266.
doi: 10.1016/j.nanoen.2018.04.047
Fang, H.; Wu, Y. Telluride nanowire and nanowire heterostructure based thermoelectric energy harvesting. J. Mater. Chem. A 2014, 2, 6004–6014.
doi: 10.1039/C3TA14129B
Li, S.; Fan, T.; Liu, X.; Liu, F.; Meng, H.; Liu, Y.; Pan, F. Graphene Quantum Dots Embedded in Bi2Te3 Nanosheets To Enhance Thermoelectric Performance. ACS Appl. Mater. Interfaces 2017, 9, 3677–3685.
doi: 10.1021/acsami.6b14274
Tan, G.; Zhao, L.; Kanatzidis, M. G. Rationally Designing High-Performance Bulk Thermoelectric Materials. Chem. Rev. 2016, 116, 12123–12149.
doi: 10.1021/acs.chemrev.6b00255
DeCoster, M. E.; Chen, X.; Zhang, K.; Rost, C. M.; Hoglund, E. R.; Howe, J. M.; Beechem, T. E.; Baumgart, H.; Hopkins, P. E. Thermal Conductivity and Phonon Scattering Processes of ALD Grown PbTe–PbSe Thermoelectric Thin Films. Adv. Funct. Mater. 2019, 29, 1904073.
doi: 10.1002/adfm.201904073
Väyrynen, K.; Vihervaara, A.; Hatanpää, T.; Mattinen, M.; Heikkilä, M. J.; Mizohata, K.; Räisänen, J.; Ritala, M.; Leskelä. M. Nickel Germanide Thin Films by Atomic Layer Deposition. Chem. Mater. 2019, 31, 14, 5314–5319.
Warburton, R. E.; Young, M. J.; Letourneau, S.; Elam, J. W.; Greeley, J. Descriptor-Based Analysis of Atomic Layer Deposition Mechanisms on Spinel LiMn2O4 Lithium-Ion Battery Cathodes. Chem. Mater. 2020, 32, 5, 1794–1806.
Kim, K. C.; Lim, S. S.; Lee, S. H.; Hong, J.; Cho, D. Y.; Mohamed, A. Y.; Koo, C. M.; Baek, S. H.; Kim, J. S.; Kim, S. K. Precision Interface Engineering of an Atomic Layer in Bulk Bi2Te3 Alloys for High Thermoelectric Performance. ACS Nano 2019, 13, 6, 7146–7154.
Mao, J.; Liu, Z.; Ren, Z. Size effect in thermoelectric materials. npj Quant Mater. 2016, 1, 16028.
doi: 10.1038/npjquantmats.2016.28
Hicks, L. D.; Dresselhaus, M. S. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 1993, 47, 12727–12731.
doi: 10.1103/PhysRevB.47.12727
Harman, T. C.; Taylor, P. J.; Walsh, M. P.; LaForge, B. E. Quantum dot superlattice thermoelectric materials and devices. Science 2002, 297, 2229–2232.
doi: 10.1126/science.1072886
Harman, T. C.; Spears, D. L.; Manfra, M. J. High thermoelectric figures of merit in PbTe quantum wells. J. Electron. Mater. 1996, 25, 1121–1127.
doi: 10.1007/BF02659913
Zhu, T.; Fu, C.; Xie, H.; Liu, Y.; Zhao, X. High Efficiency Half-Heusler Thermoelectric Materials for Energy Harvesting. Adv. Energy Mater. 2015, 5, 1500588.
doi: 10.1002/aenm.201500588
Shi, X. L.; Tao, X.; Zou, J.; Chen, Z. G. High-Performance Thermoelectric SnSe: Aqueous Synthesis, Innovations, and Challenges. Adv. Sci. 2020, 7, 1902923.
doi: 10.1002/advs.201902923
Li, S.; Xin, C.; Liu, X.; Feng, Y.; Liu, Y.; Zheng, J.; Liu, F.; Huang, Q.; Qiu, Y.; He, J.; Luo, J.; Pan, F. 2D hetero-nanosheets to enable ultralow thermal conductivity by all scale phonon scattering for highly thermoelectric performance. Nano Energy 2016, 30, 780–789.
doi: 10.1016/j.nanoen.2016.09.018
Hwang, J.; Kim, H.; Han, M. K.; Hong, J.; Shim, J. H.; Tak, J. Y.; Lim, Y. S.; Jin, Y.; Kim, J.; Park, H.; Lee, D.; Bahk, J. H.; Kim, S. J.; Kim, W. Gigantic Phonon-Scattering Cross Section To Enhance Thermoelectric Performance in Bulk Crystals. ACS Nano 2019, 13, 8347–8355.
doi: 10.1021/acsnano.9b03805
Li, S.; Chu, M.; Zhu, W.; Wang, R.; Wang, Q.; Liu, F.; Gu, M.; Xiao, Y.; Pan, F. Atomic-scale tuning oxygen-doped Bi2Te2.7Se0.3 to simultaneously enhance seebeck coefficient and electrical conductivity. Nanoscale 2020, 12, 1580–1588.
doi: 10.1039/C9NR07591G
Zhang, Y.; Li, S.; Liu, F.; Zhang, C.; Hu, L.; Ao, W.; Li, Y.; Li, J.; Xie, H.; Xiao, Y.; Pan, F. Zr vacancy interfaces: an effective strategy for collaborative optimization of ZrNiSn-based thermoelectric performance. J. Mater. Chem. A 2019, 7, 26053–26061.
doi: 10.1039/C9TA09550K
Shaohua Zhang , Liyao Liu , Yingqiao Ma , Chong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749
Mingjiao Lu , Zhixing Wang , Gui Luo , Huajun Guo , Xinhai Li , Guochun Yan , Qihou Li , Xianglin Li , Ding Wang , Jiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638
Jianmei Han , Peng Wang , Hua Zhang , Ning Song , Xuguang An , Baojuan Xi , Shenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543
Jia Fu , Shilong Zhang , Lirong Liang , Chunyu Du , Zhenqiang Ye , Guangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804
Ziyang Yin , Lingbin Xie , Weinan Yin , Ting Zhi , Kang Chen , Junan Pan , Yingbo Zhang , Jingwen Li , Longlu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628
Ruizhi Yang , Xia Li , Weiping Guo , Zixuan Chen , Hongwei Ming , Zhong-Zhen Luo , Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268
Junjie Wang , Yan Wang , Zhengdong Li , Changqiang Xie , Musammir Khan , Xingzhou Peng , Fabiao Yu . Triphenylamine-AIEgens photoactive materials for cancer theranostics. Chinese Chemical Letters, 2024, 35(6): 108934-. doi: 10.1016/j.cclet.2023.108934
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
Chao Ma , Cong Lin , Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209
Yuhan Wu , Qing Zhao , Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Gaojie Zhu , Zhen Yang , Shijun Li , Weihua Zhu , Rui Cao , Junlong Zhang , Jianzhang Zhao , Jonathan L. Sessler , Xunjin Zhu , Jianxin Song , Yongshu Xie , Jianzhuang Jiang . The 2nd Asian Conference on Porphyrins, Phthalocyanines and Related Materials. Chinese Chemical Letters, 2024, 35(7): 109535-. doi: 10.1016/j.cclet.2024.109535
Yuqing Zhu , Haohao Chen , Li Wang , Liqun Ye , Houle Zhou , Qintian Peng , Huaiyong Zhu , Yingping Huang . Piezoelectric materials for pollutants degradation: State-of-the-art accomplishments and prospects. Chinese Chemical Letters, 2024, 35(4): 108884-. doi: 10.1016/j.cclet.2023.108884
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
Ting Hu , Yuxuan Guo , Yixuan Meng , Ze Zhang , Ji Yu , Jianxin Cai , Zhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603
Dong Cheng , Youyou Feng , Bingxi Feng , Ke Wang , Guoxin Song , Gen Wang , Xiaoli Cheng , Yonghui Deng , Jing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623
Tao Wei , Jiahao Lu , Pan Zhang , Qi Zhang , Guang Yang , Ruizhi Yang , Daifen Chen , Qian Wang , Yongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122
Yue Wang , Caixia Xu , Xingtao Tian , Siyu Wang , Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167
Xiping Dong , Xuan Wang , Zhixiu Lu , Qinhao Shi , Zhengyi Yang , Xuan Yu , Wuliang Feng , Xingli Zou , Yang Liu , Yufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605
Yongkang Yue , Zhou Xu , Kaiqing Ma , Fangjun Huo , Xuemei Qin , Kuanshou Zhang , Caixia Yin . HSA shrinkage optimizes the photostability of embedded dyes fundamentally to amplify their efficiency as photothermal materials. Chinese Chemical Letters, 2024, 35(8): 109223-. doi: 10.1016/j.cclet.2023.109223