Citation: Chao-Hua ZHANG, Yi-Bo WANG, Jun-Qin LI, Fu-Sheng LIU. Phase and Defect Engineering of GeTe-based Alloys for High Thermoelectric Performance[J]. Chinese Journal of Structural Chemistry, ;2020, 39(5): 821-830. doi: 10.14102/j.cnki.0254–5861.2011–2850 shu

Phase and Defect Engineering of GeTe-based Alloys for High Thermoelectric Performance

  • Corresponding author: Chao-Hua ZHANG, zhangch@szu.edu.cn Jun-Qin LI, junqinli@szu.edu.cn
  • Received Date: 15 April 2020
    Accepted Date: 7 May 2020

    Fund Project: the National Natural Science Foundation of China 21805196Natural Science Foundation of Guangdong Province, China 2018A030310416Natural Science Foundation of Guangdong Province, China 2019A1515010832

Figures(4)

  • The widespread applications of thermoelectric (TE) materials in power generation and solid-state cooling require improving their TE figure of merit (ZT) significantly. Recently, GeTe-based alloys have shown great promise as mid-temperature TE materials with superhigh TE performance, mostly due to their relatively high-degeneracy band structures and low lattice thermal conductivity. In this perspective, we review the most recent progress of the GeTe-based TE alloys from the view of phase and defect engineering. These two strategies are the most widely-used and efficient approaches in GeTe-based alloys to optimize the transport properties of electrons and phonons for high ZT. The phase transition from rhombohedral to cubic structure is believed to improve the band convergence of GeTe-based alloys for higher electrical performance. Typical defects in GeTe-based alloys include the point defects from Ge vacancies and substitutional dopants, linear and planar defects from Ge vacancies. The defect engineering of GeTe-based alloys is important not only for optimizing the carrier density but also for tuning the band structure and phonon-scattering processes. The summarized strategies in this review can also be used as a reference for guiding the further development of GeTe-based alloys and also other TE materials.
  • 加载中
    1. [1]

      He, J.; Tritt, T. M. Advances in thermoelectric materials research: looking back and moving forward. Science 2017, 357, eaak9997.  doi: 10.1126/science.aak9997

    2. [2]

      Snyder, G. J.; Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105-114.  doi: 10.1038/nmat2090

    3. [3]

      Liu, W.; Hu, J.; Zhang, S.; Deng, M.; Han, C. G.; Liu, Y. New trends, strategies and opportunities in thermoelectric materials: a perspective. Mater. Today Phys. 2017, 1, 50-60.  doi: 10.1016/j.mtphys.2017.06.001

    4. [4]

      Yang, L.; Chen, Z. G.; Dargusch, M. S.; Zou, J. High performance thermoelectric materials: progress and their applications. Adv. Energy Mater. 2018, 8, 1701797.  doi: 10.1002/aenm.201701797

    5. [5]

      Zhu, T.; Liu, Y.; Fu, C.; Heremans, J. P.; Snyder, J. G.; Zhao, X. Compromise and synergy in high-efficiency thermoelectric materials. Adv. Mater. 2017, 29, 1605884.  doi: 10.1002/adma.201605884

    6. [6]

      Pei, Y.; Wang, H.; Snyder, G. J. Band engineering of thermoelectric materials. Adv. Mater. 2012, 24, 6125-6135.  doi: 10.1002/adma.201202919

    7. [7]

      Heremans, J. P.; Wiendlocha, B.; Chamoire, A. M. Resonant levels in bulk thermoelectric semiconductors. Energy Environ. Sci. 2012, 5, 5510-5530.  doi: 10.1039/C1EE02612G

    8. [8]

      Chang, C.; Zhao, L. D. Anharmoncity and low thermal conductivity in thermoelectrics. Mater. Today Phys. 2018, 4, 50-57.  doi: 10.1016/j.mtphys.2018.02.005

    9. [9]

      Kim, W. Strategies for engineering phonon transport in thermoelectrics. J. Mater. Chem. C 2015, 3, 10336-10348.  doi: 10.1039/C5TC01670C

    10. [10]

      Chen, Z.; Zhang, X.; Pei, Y. Manipulation of phonon transport in thermoelectrics. Adv. Mater. 2018, 30, 1705617.  doi: 10.1002/adma.201705617

    11. [11]

      Kim, S. I.; Lee, K. H.; Mun, H. A.; Kim, H. S.; Hwang, S. W.; Roh, J. W.; Yang, D. J.; Shin, W. H.; Li, X. S.; Lee, Y. H.; Snyder, G. J.; Kim, S. W. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 2015, 348, 109-114.  doi: 10.1126/science.aaa4166

    12. [12]

      Zhang, C.; Zhang, C.; Ng, H.; Xiong, Q. Solution-processed n-type Bi2Te3–xSex nanocomposites with enhanced thermoelectric performance via liquid-phase sintering. Sci. China Mater. 2019, 62, 389-398.  doi: 10.1007/s40843-018-9312-5

    13. [13]

      Zheng, G.; Su, X.; Liang, T.; Lu, Q.; Yan, Y.; Uher, C.; Tang, X. High thermoelectric performance of mechanically robust n-type Bi2Te3–xSex prepared by combustion synthesis. J. Mater. Chem. A 2015, 3, 6603-6613.  doi: 10.1039/C5TA00470E

    14. [14]

      Biswas, K.; He, J.; Blum, I. D.; Wu, C. I.; Hogan, T. P.; Seidman, D. N.; Dravid, V. P.; Kanatzidis, M. G. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 2012, 489, 414-418.  doi: 10.1038/nature11439

    15. [15]

      Hong, M.; Zou, J.; Chen, Z. G. Thermoelectric GeTe with diverse degrees of freedom having secured superhigh performance. Adv. Mater. 2019, 31, 1807071.  doi: 10.1002/adma.201807071

    16. [16]

      Wang, L.; Li, J.; Zhang, C.; Ding, T.; Xie, Y.; Li, Y.; Liu, F.; Ao, W.; Zhang, C. Discovery of low-temperature GeTe-based thermoelectric alloys with high performance competing with Bi2Te3. J. Mater. Chem. A 2020, 8, 1660-1667.  doi: 10.1039/C9TA11901A

    17. [17]

      Zheng, L.; Li, W.; Lin, S.; Li, J.; Chen, Z.; Pei, Y. Interstitial defects improving thermoelectric SnTe in addition to band convergence. ACS Energy Lett. 2017, 2, 563-568.  doi: 10.1021/acsenergylett.6b00671

    18. [18]

      Zhao, L. D.; Tan, G.; Hao, S.; He, J.; Pei, Y.; Chi, H.; Wang, H.; Gong, S.; Xu, H.; Dravid, V. P.; Uher, C.; Snyder, G. J.; Wolverton, C.; Kanatzidis, M. G. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 2016, 351, 141-144.  doi: 10.1126/science.aad3749

    19. [19]

      Ahmad, S.; Singh, A.; Bohra, A.; Basu, R.; Bhattacharya, S.; Bhatt, R.; Meshram, K. N.; Roy, M.; Sarkar, S. K.; Hayakawa, Y.; Debnath, A. K.; Aswal, D. K.; Gupta, S. K. Boosting thermoelectric performance of p-type SiGe alloys through in-situ metallic YSi2 nanoinclusions. Nano Energy 2016, 27, 282-297.  doi: 10.1016/j.nanoen.2016.07.002

    20. [20]

      Zeier, W. G.; Schmitt, J.; Hautier, G.; Aydemir, U.; Gibbs, Z. M.; Felser, C.; Snyder, G. J. Engineering half-Heusler thermoelectric materials using Zintl chemistry. Nat. Rev. Mater. 2016, 1, 16032.  doi: 10.1038/natrevmats.2016.32

    21. [21]

      Zhao, L. D.; He, J.; Berardan, D.; Lin, Y.; Li, J. F.; Nan, C. W.; Dragoe, N. BiCuSeO oxyselenides: new promising thermoelectric materials. Energy Environ. Sci. 2014, 7, 2900-2924.  doi: 10.1039/C4EE00997E

    22. [22]

      Tang, Y.; Gibbs, Z. M.; Agapito, L. A.; Li, G.; Kim, H. S.; Nardelli, M. B.; Curtarolo, S.; Snyder, G. J. Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites. Nat. Mater. 2015, 14, 1223-1228.  doi: 10.1038/nmat4430

    23. [23]

      Russ, B.; Glaudell, A.; Urban, J. J.; Chabinyc, M. L.; Segalman, R. A. Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 2016, 1, 16050.  doi: 10.1038/natrevmats.2016.50

    24. [24]

      Bauer Pereira, P.; Sergueev, I.; Gorsse, S.; Dadda, J.; Müller, E.; Hermann, R. P. Lattice dynamics and structure of GeTe, SnTe and PbTe. Phys. Status Solidi B 2013, 250, 1300-1307.  doi: 10.1002/pssb.201248412

    25. [25]

      Roychowdhury, S.; Samanta, M.; Perumal, S.; Biswas, K. Germanium chalcogenide thermoelectrics: electronic structure modulation and low lattice thermal conductivity. Chem. Mater. 2018, 30, 5799-5813.  doi: 10.1021/acs.chemmater.8b02676

    26. [26]

      Gelbstein, Y.; Dado, B.; Ben-Yehuda, O.; Sadia, Y.; Dashevsky, Z.; Dariel, M. P. Highly efficient Ge-Rich GexPb1–xTe thermoelectric alloys. J. Electron. Mater. 2009, 39, 2049-2052.

    27. [27]

      Gelbstein, Y.; Davidow, J.; Leshem, E.; Pinshow, O.; Moisa, S. Significant lattice thermal conductivity reduction following phase separation of the highly efficient GexPb1-xTe thermoelectric alloys. Phys. Status Solidi B 2014, 251, 1431-1437.  doi: 10.1002/pssb.201451088

    28. [28]

      Li, S. P.; Li, J. Q.; Wang, Q. B.; Wang, L.; Liu, F. S.; Ao, W. Q. Synthesis and thermoelectric properties of the (GeTe)1-x(PbTe)x alloys. Solid State Sci. 2011, 13, 399-403.  doi: 10.1016/j.solidstatesciences.2010.11.045

    29. [29]

      Li, J.; Zhang, X.; Wang, X.; Bu, Z.; Zheng, L.; Zhou, B.; Xiong, F.; Chen, Y.; Pei, Y. High-performance GeTe thermoelectrics in both rhombohedral and cubic phases. J. Am. Chem. Soc. 2018, 140, 16190-16197.  doi: 10.1021/jacs.8b09147

    30. [30]

      Zhang, X.; Li, J.; Wang, X.; Chen, Z.; Mao, J.; Chen, Y.; Pei, Y. Vacancy manipulation for thermoelectric enhancements in GeTe alloys. J. Am. Chem. Soc. 2018, 140, 15883-15888.  doi: 10.1021/jacs.8b09375

    31. [31]

      Li, J.; Zhang, X.; Chen, Z.; Lin, S.; Li, W.; Shen, J.; Witting, I. T.; Faghaninia, A.; Chen, Y.; Jain, A.; Chen, L.; Snyder, G. J.; Pei, Y. Low-symmetry rhombohedral GeTe thermoelectrics. Joule 2018, 2, 976-987.  doi: 10.1016/j.joule.2018.02.016

    32. [32]

      Wu, D.; Zhao, L. D.; Hao, S.; Jiang, Q.; Zheng, F.; Doak, J. W.; Wu, H.; Chi, H.; Gelbstein, Y.; Uher, C.; Wolverton, C.; Kanatzidis, M.; He, J. Origin of the high performance in GeTe-based thermoelectric materials upon Bi2Te3 doping. J. Am. Chem. Soc. 2014, 136, 11412-11419.  doi: 10.1021/ja504896a

    33. [33]

      Gelbstein, Y.; Davidow, J. Highly efficient functional GexPb1-xTe based thermoelectric alloys. Phys. Chem. Chem. Phys. 2014, 16, 20120-20126.  doi: 10.1039/C4CP02399D

    34. [34]

      Gelbstein, Y.; Davidow, J.; Girard, S. N.; Chung, D. Y.; Kanatzidis, M. Controlling metallurgical phase separation reactions of the Ge0. 87Pb0.13Te alloy for high thermoelectric performance. Adv. Energy Mater. 2013, 3, 815-820.  doi: 10.1002/aenm.201200970

    35. [35]

      Li, J.; Xie, Y.; Zhang, C.; Ma, K.; Liu, F.; Ao, W.; Li, Y.; Zhang, C. Stacking fault-induced minimized lattice thermal conductivity in the high-performance GeTe-based thermoelectric materials upon Bi2Te3 alloying. ACS Appl. Mater. Interfaces 2019, 11, 20064-20072.  doi: 10.1021/acsami.9b04984

    36. [36]

      Hazan, E.; Ben-Yehuda, O.; Madar, N.; Gelbstein, Y. Functional graded germanium-lead chalcogenide-based thermoelectric module for renewable energy applications. Adv. Energy Mater. 2015, 5, 1500272.  doi: 10.1002/aenm.201500272

    37. [37]

      Li, J.; Chen, Z.; Zhang, X.; Yu, H.; Wu, Z.; Xie, H.; Chen, Y.; Pei, Y. Simultaneous optimization of carrier concentration and alloy scattering for ultrahigh performance GeTe thermoelectrics. Adv. Sci. 2017, 4, 1700341.  doi: 10.1002/advs.201700341

    38. [38]

      Li, J.; Wu, H.; Wu, D.; Wang, C.; Zhang, Z.; Li, Y.; Liu, F.; Ao, W. Q.; He, J. Extremely low thermal conductivity in thermoelectric Ge0.55Pb0.45Te solid solutions via Se substitution. Chem. Mater. 2016, 28, 6367-6373.  doi: 10.1021/acs.chemmater.6b02772

    39. [39]

      Li, J. Q.; Lu, Z. W.; Wu, H. J.; Li, H. T.; Liu, F. S.; Ao, W. Q.; Luo, J.; He, J. Q. High thermoelectric performance of Ge1–xPbxSe0.5Te0.5 due to (Pb, Se) co-doping. Acta Mater. 2014, 74, 215-223.  doi: 10.1016/j.actamat.2014.04.036

    40. [40]

      Dong, J. F.; Sun, F. H.; Tang, H. C.; Pei, J.; Zhuang, H. L.; Hu, H. H.; Zhang, B. P.; Pan, Y.; Li, J. F. Medium-temperature thermoelectric GeTe: vacancy suppression and band structure engineering leading to high performance. Energy Environ. Sci. 2019, 12, 1396-1403.  doi: 10.1039/C9EE00317G

    41. [41]

      Perumal, S.; Roychowdhury, S.; Biswas, K. Reduction of thermal conductivity through nanostructuring enhances the thermoelectric figure of merit in Ge1–xBixTe. Inorg. Chem. Front. 2016, 3, 125-132.  doi: 10.1039/C5QI00230C

    42. [42]

      Wu, D.; Feng, D.; Xu, X.; He, M.; Xu, J.; He, J. Realizing high figure of merit plateau in Ge1-xBixTe via enhanced Bi solution and Ge precipitation. J. Alloys Compd. 2019, 805, 831-839.  doi: 10.1016/j.jallcom.2019.07.120

    43. [43]

      Wu, D.; Xie, L.; Xu, X.; He, J. High thermoelectric performance achieved in GeTe–Bi2Te3 pseudo‐binary via Van der Waals gap-induced hierarchical ferroelectric domain structure. Adv. Funct. Mater. 2019, 29, 1806613.  doi: 10.1002/adfm.201806613

    44. [44]

      Madar, N.; Givon, T.; Mogilyansky, D.; Gelbstein, Y. High thermoelectric potential of Bi2Te3 alloyed GeTe-rich phases. J. Appl. Phys. 2016, 120, 035102.  doi: 10.1063/1.4958973

    45. [45]

      Perumal, S.; Bellare, P.; Shenoy, U. S.; Waghmare, U. V.; Biswas, K. Low thermal conductivity and high thermoelectric performance in Sb and Bi codoped GeTe: complementary effect of band convergence and nanostructuring. Chem. Mater. 2017, 29, 10426-10435.  doi: 10.1021/acs.chemmater.7b04023

    46. [46]

      Shimano, S.; Tokura, Y.; Taguchi, Y. Carrier density control and enhanced thermoelectric performance of Bi and Cu co-doped GeTe. APL Mater. 2017, 5, 056103.  doi: 10.1063/1.4983404

    47. [47]

      Liu, Z.; Sun, J.; Mao, J.; Zhu, H.; Ren, W.; Zhou, J.; Wang, Z.; Singh, D. J.; Sui, J.; Chu, C. W.; Ren, Z. Phase-transition temperature suppression to achieve cubic GeTe and high thermoelectric performance by Bi and Mn codoping. Proc. Natl. Acad. Sci. USA 2018, 115, 5332-5337.  doi: 10.1073/pnas.1802020115

    48. [48]

      Li, J.; Li, W.; Bu, Z.; Wang, X.; Gao, B.; Xiong, F.; Chen, Y.; Pei, Y. Thermoelectric transport properties of CdxBiyGe1-x-yTe alloys. ACS Appl. Mater. Interfaces 2018, 10, 39904-39911.  doi: 10.1021/acsami.8b15080

    49. [49]

      Hong, M.; Wang, Y.; Liu, W.; Matsumura, S.; Wang, H.; Zou, J.; Chen, Z. G. Arrays of planar vacancies in superior thermoelectric Ge1–x–yCdxBiyTe with band convergence. Adv. Energy Mater. 2018, 8, 1801837.  doi: 10.1002/aenm.201801837

    50. [50]

      Nshimyimana, E.; Su, X.; Xie, H.; Liu, W.; Deng, R.; Luo, T.; Yan, Y.; Tang, X. Realization of non-equilibrium process for high thermoelectric performance Sb-doped GeTe. Sci. Bull. 2018, 63, 717-725.  doi: 10.1016/j.scib.2018.04.012

    51. [51]

      Perumal, S.; Roychowdhury, S.; Negi, D. S.; Datta, R.; Biswas, K. High thermoelectric performance and enhanced mechanical stability of p-type Ge1–xSbxTe. Chem. Mater. 2015, 27, 7171-7178.

    52. [52]

      Xu, X.; Xie, L.; Lou, Q.; Wu, D.; He, J. Boosting the thermoelectric performance of pseudo-layered Sb2Te3(GeTe)n via vacancy engineering. Adv. Sci. 2018, 5, 1801514.  doi: 10.1002/advs.201801514

    53. [53]

      Rosenthal, T.; Schneider, M. N.; Stiewe, C.; Döblinger, M.; Oeckler, O. Real structure and thermoelectric properties of GeTe-rich germanium antimony tellurides. Chem. Mater. 2011, 23, 4349-4356.  doi: 10.1021/cm201717z

    54. [54]

      Zheng, Z.; Su, X.; Deng, R.; Stoumpos, C.; Xie, H.; Liu, W.; Yan, Y.; Hao, S.; Uher, C.; Wolverton, C.; Kanatzidis, M. G.; Tang, X. Rhombohedral to cubic conversion of GeTe via MnTe alloying leads to ultralow thermal conductivity, electronic band convergence, and high thermoelectric performance. J. Am. Chem. Soc. 2018, 140, 2673-2686.  doi: 10.1021/jacs.7b13611

    55. [55]

      Hong, M.; Wang, Y.; Feng, T.; Sun, Q.; Xu, S.; Matsumura, S.; Pantelides, S. T.; Zou, J.; Chen, Z. G. Strong phonon-phonon interactions securing extraordinary thermoelectric Ge1-xSbxTe with Zn-alloying-induced band alignment. J. Am. Chem. Soc. 2019, 141, 1742-1748.  doi: 10.1021/jacs.8b12624

    56. [56]

      Hong, M.; Chen, Z. G.; Yang, L.; Zou, Y. C.; Dargusch, M. S.; Wang, H.; Zou, J. Realizing zT of 2.3 in Ge1-x-ySbxInyTe via reducing the phase-transition temperature and introducing resonant energy doping. Adv. Mater. 2018, 30, 1705942.  doi: 10.1002/adma.201705942

    57. [57]

      Yue, L.; Fang, T.; Zheng, S.; Cui, W.; Wu, Y.; Chang, S.; Wang, L.; Bai, P.; Zhao, H. Cu/Sb Codoping for tuning carrier concentration and thermoelectric performance of GeTe-based alloys with ultralow lattice thermal conductivity. ACS Appl. Energy Mater. 2019, 2, 2596-2603.  doi: 10.1021/acsaem.8b02213

    58. [58]

      Li, J.; Zhang, X.; Lin, S.; Chen, Z.; Pei, Y. Realizing the high thermoelectric performance of GeTe by Sb-doping and Se-alloying. Chem. Mater. 2016, 29, 605-611.

    59. [59]

      Rosenthal, T.; Urban, P.; Nimmrich, K.; Schenk, L.; de Boor, J.; Stiewe, C.; Oeckler, O. Enhancing the thermoelectric properties of germanium antimony tellurides by substitution with selenium in compounds GenSb2(Te1–xSex)n+3 (0≤x≤0. 5; n≥7). Chem. Mater. 2014, 26, 2567-2578.  doi: 10.1021/cm404115k

    60. [60]

      Fahrnbauer, F.; Souchay, D.; Wagner, G.; Oeckler, O. High thermoelectric figure of merit values of germanium antimony tellurides with kinetically stable cobalt germanide precipitates. J. Am. Chem. Soc. 2015, 137, 12633-12638.  doi: 10.1021/jacs.5b07856

    61. [61]

      Kim, H. S.; Dharmaiah, P.; Madavali, B.; Ott, R.; Lee, K. H.; Hong, S. J. Large-scale production of (GeTe)x(AgSbTe2)100–x (x = 75, 80, 85, 90) with enhanced thermoelectric properties via gas-atomization and spark plasma sintering. Acta Mater. 2017, 128, 43-53.  doi: 10.1016/j.actamat.2017.01.053

    62. [62]

      Cook, B. A.; Kramer, M. J.; Wei, X.; Harringa, J. L.; Levin, E. M. Nature of the cubic to rhombohedral structural transformation in (AgSbTe2)15(GeTe)85 thermoelectric material. J. Appl. Phys. 2007, 101, 053715.  doi: 10.1063/1.2645675

    63. [63]

      Samanta, M.; Roychowdhury, S.; Ghatak, J.; Perumal, S.; Biswas, K. Ultrahigh average thermoelectric figure of merit, low lattice thermal conductivity and enhanced microhardness in nanostructured (GeTe)x(AgSbSe2)100-x. Chem. Eur. J. 2017, 23, 7438-7443.  doi: 10.1002/chem.201701480

    64. [64]

      Yang, L.; Li, J. Q.; Chen, R.; Li, Y.; Liu, F. S.; Ao, W. Q. Influence of Se substitution in GeTe on phase and thermoelectric properties. J. Electron. Mater. 2016, 45, 5533-5539.  doi: 10.1007/s11664-016-4770-4

    65. [65]

      Samanta, M.; Biswas, K. Low thermal conductivity and high thermoelectric performance in (GeTe)1-2x(GeSe)x(GeS)x: competition between solid solution and phase separation. J. Am. Chem. Soc. 2017, 139, 9382-9391.  doi: 10.1021/jacs.7b05143

    66. [66]

      Wu, L.; Li, X.; Wang, S.; Zhang, T.; Yang, J.; Zhang, W.; Chen, L.; Yang, J. Resonant level-induced high thermoelectric response in indium-doped GeTe. NPG Asia Mater. 2017, 9, e343.  doi: 10.1038/am.2016.203

    67. [67]

      Lewis, J. E. Optical properties and energy gap of GeTe from reflectance studies. Phys. Status Solidi B 1973, 59, 367-377.  doi: 10.1002/pssb.2220590138

    68. [68]

      Xing, T.; Song, Q.; Qiu, P.; Zhang, Q.; Xia, X.; Liao, J.; Liu, R.; Huang, H.; Yang, J.; Bai, S.; Ren, D.; Shi, X.; Chen, L. Superior performance and high service stability for GeTe-based thermoelectric compounds. Nat. Sci. Rev. 2019, 6, 944-954.  doi: 10.1093/nsr/nwz052

    69. [69]

      Samanta, M.; Ghosh, T.; Arora, R.; Waghmare, U. V.; Biswas, K. Realization of both n- and p-type GeTe thermoelectrics: electronic structure modulation by AgBiSe2 alloying. J. Am. Chem. Soc. 2019, 141, 19505-19512.  doi: 10.1021/jacs.9b11405

    70. [70]

      Li, P.; Ding, T.; Li, J.; Zhang, C.; Dou, Y.; Li, Y.; Hu, L.; Liu, F.; Zhang, C. Positive effect of Ge vacancies on facilitating band convergence and suppressing bipolar transport in GeTe‐based alloys for high thermoelectric performance. Adv. Funct. Mater. 2020, 1910059.

    71. [71]

      Bayikadi, K. S.; Sankar, R.; Wu, C. T.; Xia, C.; Chen, Y.; Chen, L. C.; Chen, K. H.; Chou, F. C. Enhanced thermoelectric performance of GeTe through in situ microdomain and Ge-vacancy control. J. Mater. Chem. A 2019, 7, 15181-15189.  doi: 10.1039/C9TA03503F

    72. [72]

      Sist, M.; Kasai, H.; Hedegaard, E. M. J.; Iversen, B. B. Role of vacancies in the high-temperature pseudodisplacive phase transition in GeTe. Phys. Rev. B 2018, 97, 094116.  doi: 10.1103/PhysRevB.97.094116

    73. [73]

      Peng, W.; Smiadak, D. M.; Boehlert, M. G.; Mather, S.; Williams, J. B.; Morelli, D. T.; Zevalkink, A. Lattice hardening due to vacancy diffusion in (GeTe)mSb2Te3 alloys. J. Appl. Phys. 2019, 126, 055106.  doi: 10.1063/1.5108659

    74. [74]

      Qiu, Y.; Jin, Y.; Wang, D.; Guan, M.; He, W.; Peng, S.; Liu, R.; Gao, X.; Zhao, L. D. Realizing high thermoelectric performance in GeTe through decreasing the phase transition temperature via entropy engineering. J. Mater. Chem. A 2019, 7, 26393-26401.  doi: 10.1039/C9TA10963C

    75. [75]

      Shuai, J.; Sun, Y.; Tan, X.; Mori, T. Manipulating the Ge vacancies and Ge precipitates through Cr doping for realizing the high-performance GeTe thermoelectric material. Small 2020, 16, 1906921.  doi: 10.1002/smll.201906921

    76. [76]

      Nshimyimana, E.; Hao, S.; Su, X.; Zhang, C.; Liu, W.; Yan, Y.; Uher, C.; Wolverton, C.; Kanatzidis, M. G.; Tang, X. Discordant nature of Cd in GeTe enhances phonon scattering and improves band convergence for high thermoelectric performance. J. Mater. Chem. A 2020, 8, 1193-1204.  doi: 10.1039/C9TA10436D

    77. [77]

      Xie, L.; Chen, Y.; Liu, R.; Song, E.; Xing, T.; Deng, T.; Song, Q.; Liu, J.; Zheng, R.; Gao, X.; Bai, S.; Chen, L. Stacking faults modulation for scattering optimization in GeTe-based thermoelectric materials. Nano Energy 2020, 68, 104347.  doi: 10.1016/j.nanoen.2019.104347

    78. [78]

      Xu, X.; Huang, Y.; Xie, L.; Wu, D.; Ge, Z.; He, J. Realizing improved thermoelectric performance in BiI3-doped Sb2Te3(GeTe)17 via introducing dual vacancy defects. Chem. Mater. 2020, 32, 1693-1701.  doi: 10.1021/acs.chemmater.0c00113

    79. [79]

      Borup, K. A.; de Boor, J.; Wang, H.; Drymiotis, F.; Gascoin, F.; Shi, X.; Chen, L.; Fedorov, M. I.; Müller, E.; Iversen, B. B.; Snyder, G. J. Measuring thermoelectric transport properties of materials. Energy Environ. Sci. 2015, 8, 423-435.  doi: 10.1039/C4EE01320D

    80. [80]

      Li, J.; Zhao, S.; Chen, J.; Han, C.; Hu, L.; Liu, F.; Ao, W.; Li, Y.; Xie, H.; Zhang, C. Al-Si Alloy as a diffusion barrier for GeTe-based thermoelectric legs with high interfacial reliability and mechanical strength. ACS Appl. Mater. Interfaces 2020, 12, 18562-18569.  doi: 10.1021/acsami.0c02028

  • 加载中
    1. [1]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    2. [2]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    3. [3]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    4. [4]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    5. [5]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    6. [6]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    7. [7]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    8. [8]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    9. [9]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

    10. [10]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    11. [11]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    12. [12]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    13. [13]

      Shu LinKezhen Qi . Phase-dependent lithium-alloying reactions for lithium-metal batteries. Chinese Chemical Letters, 2024, 35(4): 109431-. doi: 10.1016/j.cclet.2023.109431

    14. [14]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

    15. [15]

      Zhaohong ChenMengzhen LiJinfei LanShengqian HuXiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548

    16. [16]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

    17. [17]

      Zhuoer Cai Yinan Zhang Xiu-Ni Hua Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426

    18. [18]

      Bei Li Zhaoke Zheng . In situ monitoring of the spatial distribution of oxygen vacancies at the single-particle level. Chinese Journal of Structural Chemistry, 2024, 43(10): 100331-100331. doi: 10.1016/j.cjsc.2024.100331

    19. [19]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    20. [20]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

Metrics
  • PDF Downloads(5)
  • Abstract views(210)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return