Citation: Qing ZOU, Qiu-Shuang GAO, Peng YAO, Qi-Zheng YAO, Ji ZHANG. Structure-based Screening for the Non-zinc-chelating Selective MMP-13 Inhibitors of Natural Products[J]. Chinese Journal of Structural Chemistry, ;2020, 39(11): 1990-2000. doi: 10.14102/j.cnki.0254–5861.2011–2831 shu

Structure-based Screening for the Non-zinc-chelating Selective MMP-13 Inhibitors of Natural Products

  • Corresponding author: Ji ZHANG, 
  • Received Date: 31 March 2020
    Accepted Date: 8 July 2020

Figures(8)

  • Matrix metalloproteinase-13 (MMP-13) has been considered as a promising therapeutic target for osteoarthritis. In this work, the experimental crystal structures of five MMP-13-ligand complexes are used to build the multiple structure-based pharmacophore model of MMP-13 inhibitors. The reliability of pharmacophore model is validated using a decoy set. The pharmacophore model contains four chemical features: two hydrogen bond acceptor (HBA), one hydrophobic (HY) feature, and one ring aromatic (RA) feature. Particularly, the HY feature is found to orient the MMP-13 inhibitors deep into the S1' pocket of MMP-13 to produce selective inhibition. By carrying out the screening of pharmacophore model and subsequent molecular docking, the four non-zinc-chelating selective MMP-13 inhibitors of natural products (NP-015973, NP-000814, STOCK1N-24933, and STOCK1N-69443) are identified. It is found that the binding modes of MMP-13 with our screened four natural products are very similar to the reported experimental binding mode of MMP-13 with the most active inhibitor (GG12003, IC50: 0.67 nM), and each of them involves the interactions of a ligand with the three amino acid residues Thr226, Lys119, and His201 of MMP-13 receptor. This shows that our modeling results are in good agreement with the relevant experimental results, which strongly supports our screened MMP-13 inhibitors of natural products. These screened natural products may be used as the lead compounds of MMP-13 inhibitors in the future studies of structural modifications.
  • 加载中
    1. [1]

      Stamenkovic, I. Extracellular matrix remodelling: the role of matrix metalloproteinases. J. Pathol. 2003, 200, 448−464.  doi: 10.1002/path.1400

    2. [2]

      Murphy, G.; Knauper, V.; Atkinson, S.; Butler, G.; English, W.; Hutton, M. Matrix metalloproteinases in arthritic disease. Arthritis Res. 2002, 4, S39−S49.  doi: 10.1186/ar572

    3. [3]

      Conrozier, T.; Ferrand, F.; Poole, A. R.; Verret, C. Differences in biomarkers of type II collagen in atrophic and hypertrophic osteoarthritis of the hip: implications for the differing pathobiologies. Osteoarthr Cartilage. 2007, 15, 462−467.  doi: 10.1016/j.joca.2006.09.002

    4. [4]

      Buckwalter, J. A.; Martin, J. A. Osteoarthritis. Adv. Drug Delivery Rev. 2006, 58, 150−167.  doi: 10.1016/j.addr.2006.01.006

    5. [5]

      Neuhold, L. A.; Killar, L.; Zhao, W.; Sung, M. A.; Warner, L.; Kulik, J.; Turner, J. Postnatal expression in hyaline cartilage of constitutively active human collagenase-3 (MMP-13) induces osteoarthritis in mice. J. Clin. Invest. 2001, 107, 35−44.  doi: 10.1172/JCI10564

    6. [6]

      Stickens, D.; Behonick, D. J.; Ortega, N.; Heyer, B.; Hartenstein, B.; Yu, Y.; Fosang, A. J.; Angel, P.; Werb, Z. Altered endochondral bone development in matrix metalloproteinase 13-deficient mice. Development 2004, 131, 5883−5895.  doi: 10.1242/dev.01461

    7. [7]

      Tallant, C.; Marrero, A. Matrix metalloproteinases: fold and function of their catalytic domains. Biochim. Biophys. Acta 2010, 1803, 20−28.  doi: 10.1016/j.bbamcr.2009.04.003

    8. [8]

      Renkiewicz, R.; Qiu, L.; Lesch, C.; Sun, X.; Devalaraja, R.; Cody, T.; Kaldjian, E.; Welgus, H.; Baragi, V. Broad-spectrum matrix metalloproteinase inhibitor marimastat-induced musculoskeletal side effects in rats. Arthritis Rheum. 2003, 48, 1742−1749.  doi: 10.1002/art.11030

    9. [9]

      Fabre, B.; Ramos, A. Targeting matrix metalloproteinases: exploring the dynamics of the S1' pocket in the design of selective, small molecule inhibitors. J. Med. Chem. 2014, 57, 10205−10219.  doi: 10.1021/jm500505f

    10. [10]

      Engel, C. K.; Pirard, B.; Schimanski, S.; Kirsch, R.; Habermann, J.; Klingler, O.; Schlotte, V.; Weithmann, K. U.; Wendt, K. U. Structural basis for the highly selective inhibition of MMP-13. Chem. Biol. 2014, 12, 181−189.

    11. [11]

      Johnson, A. R.; Pavlovsky, A. G.; Ortwine, D. F.; Prior, F.; Man, C. F.; Bornemeier, D. A.; Banotai, C. A. Discovery and characterization of a novel inhibitor of matrix metalloprotease-13 that reduces cartilage damage in vivo without joint fibroplasia side effects. J. Biol. Chem. 2007, 282, 27781−27791.  doi: 10.1074/jbc.M703286200

    12. [12]

      Heim-Riether, A.; Taylor, S. J.; Liang, S.; Gao, D. A. Improving potency and selectivity of a new class of non-Zn-chelating MMP-13 inhibitors. Bioorg. Med. Chem. Lett. 2009, 19, 5321−5324.  doi: 10.1016/j.bmcl.2009.07.151

    13. [13]

      Choi, J. Y.; Fuerst, R.; Knapinska, A. M. Structure-based design and synthesis of potent and selective matrix metalloproteinase 13 inhibitors. J. Med. Chem. 2017, 60, 5816−5825.  doi: 10.1021/acs.jmedchem.7b00514

    14. [14]

      Gao, D. A.; Xiong, Z.; Heim-Riether, A.; Amodeo, L.; August, E. M.; Cao, X.; Ciccarelli, L. SAR studies of non-zinc-chelating MMP-13 inhibitors: improving selectivity and metabolic stability. Bioorg. Med. Chem. Lett. 2010, 20, 5039−5043.  doi: 10.1016/j.bmcl.2010.07.036

    15. [15]

      Gege, C.; Bao, B.; Bluhm, H.; Boer, J.; Gallagher, B. M.; Korniski, B.; Powers, T. S.; Steeneck, C. Discovery and evaluation of a non-zn chelating, selective matrix metalloproteinase 13 (MMP-13) inhibitor for potential intra-articular treatment of osteoarthritis. J. Med. Chem. 2012, 55, 709−716.  doi: 10.1021/jm201152u

    16. [16]

      Li, J. J.; Nahra, J.; Johnson, A. R.; Bunker, A.; O'Brien, P.; Yue, W. S.; Ortwine, D. F.; Man, C. F.; Baragi, V. Quinazolinones and pyrido [3, 4-d] pyrimidin-4-ones as orally active and specific matrix metalloproteinase-13 inhibitors for the treatment of osteoarthritis. J. Med. Chem. 2008, 51, 835−841.  doi: 10.1021/jm701274v

    17. [17]

      Taylor, S. J.; Abeywardane, A.; Liang, S.; Muegge, I.; Padyana, A.; Xiong, Z.; Hill-Drzewi, M.; Farmer, B. Fragment based discovery of indole inhibitors of matrix metalloproteinase-13. J. Med. Chem. 2011, 54, 8174−8187.  doi: 10.1021/jm201129m

    18. [18]

      Savi, C. D.; Morley, A. D.; Ting, A.; Nash, I.; Karabelas, K.; Wood, C. M.; James, M.; Norris, S. J.; Karoutchi, G.; Rankine, N. Selective non zinc binding inhibitors of MMP13. Bioorg. Med. Chem. Lett. 2011, 21, 4215−4219.  doi: 10.1016/j.bmcl.2011.05.075

    19. [19]

      Spicer, T. P.; Jiang, J.; Taylor, A. B.; Choi, J. Y.; Hart, P. J.; Roush, W. R.; Field, G. B.; Hodder, P. S.; Minond, D. Characterization of selective exosite-binding inhibitors of matrixmetalloproteinase 13 that prevent articular cartilage degradation in vitro. J. Med. Chem. 2014, 57, 9598−9611.  doi: 10.1021/jm501284e

    20. [20]

      Cragg, G. M.; Grothaus, P. G.; Newman, D. J. New horizons for old drugs and drug leads. J. Nat. Prod. 2014, 77, 703−723.  doi: 10.1021/np5000796

    21. [21]

      Cragg, G. M.; Grothaus, P. G.; Newman, D. Impact of natural products on developing new anti-cancer agents. J. Chem. Rev. 2009, 109, 3012−3043.  doi: 10.1021/cr900019j

    22. [22]

      Yang, S. Y. Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discovery Today 2010, 15, 444−450.  doi: 10.1016/j.drudis.2010.03.013

    23. [23]

      Gagnon, J. K.; Law, S. M.; Brooks, C. L. Flexible CDOCKER: development and application of a pseudo-explicit structure-based docking method within CHARMM. J. Comput. Chem. 2016, 37, 753−762.  doi: 10.1002/jcc.24259

    24. [24]

      Discovery Studio, Version 3.0; Accelrys Inc: San Diego 2010.

    25. [25]

      Hamza, A.; Wei, N. N.; Zhan, C. G. Ligand-based virtual screening approach using a new scoring function. J. Chem. Inf. Model 2012, 52, 963−974.  doi: 10.1021/ci200617d

    26. [26]

      Triballeau, N.; Acher, F.; Brabet, I. Virtual screening workflow development guided by the "receiver operating characteristic" curve approach, application to high-throughput docking on metabotropic glutamate receptor subtype 4. J. Med. Chem. 2005, 48, 2534−2547.  doi: 10.1021/jm049092j

    27. [27]

      Hein, M.; Zilian, D. Docking compared to 3D pharmacophores: the scoring function challenge. Drug Discovery Today: Technol. 2011, 7, e229−e236.

    28. [28]

      Wang, Y. J.; Yang, L. M.; Hou, J. Y.; Zou, Q.; Gao, Q.; Yao, W. H.; Yao, Q. Z.; Zhang, J. Hierarchical virtual screening of the dual MMP-2/HDAC-6 inhibitors from natural products based on pharmacophore models and molecular docking. J. Biomol. Struct. Dyn. 2019, 37, 649−670.  doi: 10.1080/07391102.2018.1434833

    29. [29]

      Hou, J. Y.; Zou, Q.; Wang, Y. J.; Gao, Q.; Yao, W. H.; Yao, Q. Z.; Zhang, J. Screening for the selective inhibitors of MMP-9 from natural products based on pharmacophore modeling and molecular docking in combination with bioassay experiment, hybrid QM/MM calculation, and MD simulation. J. Biomol. Struct. Dyn. 2019, 37, 3135−3149.  doi: 10.1080/07391102.2018.1509019

    30. [30]

      Li, J.; Zhao, F.; Li, M. Z.; Chen, L. X.; Qiu, F. Diarylheptanoids from the Rhizomes of Curcuma kwangsiensis. J. Nat. Prod. 2010, 73, 1667−1671.  doi: 10.1021/np100392m

    31. [31]

      Kim, S. B.; Liu, Q.; Ahn, J. H.; Jo, Y. H.; Turk, A.; Hong, I. P.; Han, S. M.; Hwang, Y. B.; Lee, M. K. Polyamine derivatives from the bee pollen of Quercus mongolica with tyrosinase inhibitory activity. Bioorg. Chem. 2018, 81, 127−133.  doi: 10.1016/j.bioorg.2018.08.014

  • 加载中
    1. [1]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    2. [2]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    3. [3]

      Haijun ShenYi QiaoChun ZhangYane MaJialing ChenYingying CaoWenna Zheng . A matrix metalloproteinase-sensitive hydrogel combined with photothermal therapy for transdermal delivery of deferoxamine to accelerate diabetic pressure ulcer healing. Chinese Chemical Letters, 2024, 35(12): 110283-. doi: 10.1016/j.cclet.2024.110283

    4. [4]

      Hongmei YuBaoxi ZhangMeiju LiuCheng XingGuorong HeLi ZhangNingbo GongYang LuGuanhua Du . Theoretical and experimental cocrystal screening of temozolomide with a series of phenolic acids, promising cocrystal coformers. Chinese Chemical Letters, 2024, 35(5): 109032-. doi: 10.1016/j.cclet.2023.109032

    5. [5]

      Beitong ZhuXiaorui YangLirong JiangTianhong ChenShuangfei WangLintao Zeng . A portable and versatile fluorescent platform for high-throughput screening of toxic phosgene, diethyl chlorophosphate and volatile acyl chlorides. Chinese Chemical Letters, 2025, 36(1): 110222-. doi: 10.1016/j.cclet.2024.110222

    6. [6]

      Qingyun HuWei WangJunyuan LuHe ZhuQi LiuYang RenHong WangJian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344

    7. [7]

      Hualei XuManman HanHaiqiang LiuLiang QinLulu ChenHao HuRan WuChenyu YangHua GuoJinrong LiJinxiang FuQichen HaoYijun ZhouJinchao FengXiaodong Wang . 4-Nitrocatechol as a novel matrix for low-molecular-weight compounds in situ detection and imaging in biological tissues by MALDI-MSI. Chinese Chemical Letters, 2024, 35(6): 109095-. doi: 10.1016/j.cclet.2023.109095

    8. [8]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    9. [9]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    10. [10]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    11. [11]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

    12. [12]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    13. [13]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    14. [14]

      Yanwei DuanQing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905

    15. [15]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    16. [16]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    17. [17]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    18. [18]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    19. [19]

      Wei-Jia WangKaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998

    20. [20]

      Dongpu WuZheng YangYuchen XiaLulu WuYingxia ZhouCaoyuan NiuPuhui XieXin ZhengZhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353

Metrics
  • PDF Downloads(2)
  • Abstract views(290)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return