Point Defect Engineering Boosting the Thermoelectric Properties of Layered 122 Zintl Compounds
- Corresponding author: Jun LUO, junluo@shu.edu.cn
Citation: Kai GUO, Hao-Jie HUO, Jun LUO. Point Defect Engineering Boosting the Thermoelectric Properties of Layered 122 Zintl Compounds[J]. Chinese Journal of Structural Chemistry, ;2020, 39(5): 815-820. doi: 10.14102/j.cnki.0254–5861.2011–2830
Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457-1461.
doi: 10.1126/science.1158899
Snyder, G. J.; Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105-114.
doi: 10.1038/nmat2090
Slack, G. A.; Rowe, D. M. ed. CRC Handbook of thermoelectrics. Boca Raton: CRC Press 1995, 407-440.
Sales, B. C.; Mandrus, D.; Williams, R. K. Filled skutterudite antimonides: a new class of thermoelectric materials. Science 1996, 272, 1325-1328.
doi: 10.1126/science.272.5266.1325
Shi, X.; Yang, J.; Salvador, J. R.; Chi, M.; Cho, J. Y.; Wang, H.; Bai, S.; Yang, J.; Zhang, W.; Chen, L. Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J. Am. Chem. Soc. 2011, 133, 7837-7846.
doi: 10.1021/ja111199y
Toberer, E. S.; May, A. F.; Melot, B. C.; Flage-Larsen, E.; Snyder, G. J. Electronic structure and transport in thermoelectric compounds AZn2Sb2 (A = Sr, Ca, Yb, Eu). Dalton Trans. 2010, 39, 1046-1054.
doi: 10.1039/B914172C
Guo, K.; Cao, Q. G.; Zhao, J. T. Zintl phase compounds AM2Sb2 (A = Ca, Sr, Ba, Eu, Yb; M = Zn, Cd) and their substitution variants: a class of potential thermoelectric materials. J. Rare Earth 2013, 31, 1029-1038.
doi: 10.1016/S1002-0721(12)60398-6
Pomrehn, G. S.; Zevalkink, A.; Zeier, W. G.; Walle, A. V. D.; Snyder, G. J. Defect-controlled electronic properties in AZn2Sb2 Zintl phases. Angew. Chem. Int. Ed. 2014, 53, 3422-3426.
doi: 10.1002/anie.201311125
Peng, W. Y.; Chanakian, S.; Zevalkink, A. Crystal chemistry and thermoelectric transport of layered AM2X2 compounds. Inorg. Chem. Front. 2018, 5, 1744-1759.
doi: 10.1039/C7QI00813A
Zhang, X.; Gu, H.; Zhang, Y.; Guo, L.; Yang, J.; Luo, S.; Lu, X.; Chen, K.; Chai, H.; Wang, H.; Zhang, X.; Zhou, X. Enhanced thermoelectric properties of YbZn2Sb2-xBix through a synergistic effect via Bi-doping. Chem. Eng. J. 2019, 374, 589–595.
doi: 10.1016/j.cej.2019.05.206
Zheng, L.; Li, W.; Sun, C.; Shi, X.; Zhang, X.; Pei, Y. Ternary thermoelectric AB2C2 Zintls. J. Alloys Compd. 2020, 821, 153497.
doi: 10.1016/j.jallcom.2019.153497
Guo, M. C.; Guo, F. K.; Zhu, J. B.; Yin, L.; Qin, H. X.; Zhang, Q.; Cai, W.; Sui, J. H. Enhanced thermoelectric properties of p-type CaMg2Bi2 via a synergistic effect originated from Zn and alkali-metal Co-doping. ACS Appl. Mater. Interfaces 2020, 12, 6015-6021.
doi: 10.1021/acsami.9b22333
Zhou, T.; Feng, Z.; Mao, J.; Jiang, J.; Zhu, H.; Singh, D. J.; Wang, C. Ren, Z. Thermoelectric properties of Zintl phase YbMg2Sb2. Chem. Mater. 2020, 32, 776-784.
doi: 10.1021/acs.chemmater.9b04131
Yang, X.; Gu, Y. Y.; Li, Y. P.; Guo, K.; Zhang, J. Y.; Zhao, J. T. The equivalent and aliovalent dopants boosting the thermoelectric properties of YbMg2Sb2. Sci. China Mater. 2020, 63, 437-443.
doi: 10.1007/s40843-019-1199-4
Toberer, E. S.; May, A. F.; Snyder, G. J. Zintl chemistry for designing high efficiency thermoelectric materials. Chem. Mater. 2010, 22, 624-634.
doi: 10.1021/cm901956r
Kauzlarich, S. M.; Brown, S. R.; Snyder, G. J. Zintl phases for thermoelectric devices. Dalton Trans. 2007, 21, 2099-2107.
Zevalkink, A.; Zeier, W. G.; Cheng, E.; Snyder, J.; Fleurial, J. P.; Bux, S. Nonstoichiometry in the Zintl phase Yb1-δZn2Sb2 as a route to thermoelectric optimization. Chem. Mater. 2014, 26, 5710-5717.
doi: 10.1021/cm502588r
Takagiwa, Y.; Sato, Y.; Zevalkink, A.; Kanazawa, I.; Kimura, K.; Isoda, Y.; Shinohara, Y. Thermoelectric properties of EuZn2Sb2 Zintl compounds: zT enhancement through Yb substitution for Eu. J. Alloys Compd. 2017, 703, 73-79.
doi: 10.1016/j.jallcom.2017.01.350
Guo, K.; Lin, J.; Li, Y.; Zhu, Y.; Li, X.; Yang, X.; Xing, J.; Yang, J.; Luo J.; Zhao, J. T. Suppressing the dynamic precipitation and lowering the thermal conductivity for stable and high thermoelectric performance in BaCu2Te2 based materials. J. Mater. Chem. A 2020, 8, 5323-5331.
doi: 10.1039/D0TA00245C
Wang, X.; Li, W.; Zhou, B.; Sun, C.; Zheng, L.; Tang, J.; Shi, X.; Pei, Y. Experimental revelation of multiband transport in heavily doped BaCd2Sb2 with promising thermoelectric performance. Mater. Today Phys. 2019, 8, 123-127.
doi: 10.1016/j.mtphys.2019.03.002
Kunioka, H.; Kihou, K.; Nishiate, H.; Yamamoto, A.; Usui, H.; Kurokib, K.; Lee, C. H. Thermoelectric properties of (Ba, K)Cd2As2 crystallized in the CaAl2Si2-type structure. Dalton Trans. 2018, 47, 16205-16210.
doi: 10.1039/C8DT02955E
Sun, C.; Shi, X.; Zheng, L.; Chen, B.; Li, W. Transport properties of p-type CaMg2Bi2 thermoelectrics. J. Mater. 2019, 5, 567-573.
Wang, X.; Li, W.; Wang, C.; Li, J.; Zhang, X. Y.; Zhou, B. Q.; Chen, Y.; Pei, Y. Z. Single parabolic band transport in p-type EuZn2Sb2 thermoelectrics. J. Mater. Chem. A 2017, 5, 24185-24192.
doi: 10.1039/C7TA08869H
Pei, Y.; Shi, X.; LaLonde, A.; Wang, H.; Chen, L.; Snyder, G. J. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 2011, 473, 66-69.
doi: 10.1038/nature09996
Zhang, J.; Song, L.; Madsen, G. K. H.; Fischer, K. F. F.; Zhang W.; Shi X.; Iversen, B. B. Designing high-performance layered thermoelectric materials through orbital engineering. Nat. Commun. 2016, 7, 10892.
doi: 10.1038/ncomms10892
Zheng, L.; Li, W.; Wang, X.; Pei, Y. Alloying for orbital alignment enables thermoelectric enhancement of EuCd2Sb2. J. Mater. Chem. A 2019, 7, 12773-12778.
doi: 10.1039/C9TA03502H
Wang, X.; Li, J.; Wang, C.; Zhou, B.; Zheng, L.; Gao, B.; Chen, Y.; Pei, Y. Orbital alignment for high performance thermoelectric YbCd2Sb2 alloys. Chem. Mater. 2018, 30, 5339-5345
doi: 10.1021/acs.chemmater.8b02155
Saparamadu, U.; Tan, X.; Song, S.; Ren, Z.; Sun, J.; Singh, D. J.; Shuai, J.; Jiang J.; Ren, Z. Achieving high-performance p-type SmMg2Bi2 thermoelectric materials through band engineering and alloying effects. J. Mater. Chem. A 2020, accepted. doi.org/10.1039/C9TA13224D.
Callaway, J.; von Baeyer, H. C. Effect of point imperfections on lattice thermal conductivity. Phys. Rev. 1960, 120, 1149-1154.
doi: 10.1103/PhysRev.120.1149
Ce Liang , Qiuhui Sun , Adel Al-Salihy , Mengxin Chen , Ping Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306
Zhuoer Cai , Yinan Zhang , Xiu-Ni Hua , Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426
Zhengzheng LIU , Pengyun ZHANG , Chengri WANG , Shengli HUANG , Guoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Ya-Nan Yang , Zi-Sheng Li , Sourav Mondal , Lei Qiao , Cui-Cui Wang , Wen-Juan Tian , Zhong-Ming Sun , John E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
Jian Ji , Jie Yan , Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360
Shaohua Zhang , Liyao Liu , Yingqiao Ma , Chong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749
Jia Fu , Shilong Zhang , Lirong Liang , Chunyu Du , Zhenqiang Ye , Guangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Chengde Wang , Liping Huang , Shanshan Wang , Lihao Wu , Yi Wang , Jun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383
Ruizhi Yang , Xia Li , Weiping Guo , Zixuan Chen , Hongwei Ming , Zhong-Zhen Luo , Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268
Jie Ren , Hao Zong , Yaqun Han , Tianyi Liu , Shufen Zhang , Qiang Xu , Suli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350
Rongliang Deng , Yihang Chen , Xiaotong Fan , Guolong Chen , Shuli Wang , Changzhi Yu , Xiao Yang , Tingzhu Wu , Zhong Chen , Yue Lin . Break of thermal equilibrium between optical and acoustic phonon branches of CsPbI3 under continuous-wave light excitation and cryogenic temperature. Chinese Chemical Letters, 2024, 35(7): 109346-. doi: 10.1016/j.cclet.2023.109346
Jiayuan Liang , Xin Mi , Songhao Guo , Hui Luo , Kejun Bu , Tonghuan Fu , Menglin Duan , Yang Wang , Qingyang Hu , Rengen Xiong , Peng Qin , Fuqiang Huang , Xujie Lü . Pressure-induced emission in 0D metal halide (EATMP)SbBr5 by regulating exciton-phonon coupling. Chinese Journal of Structural Chemistry, 2024, 43(7): 100333-100333. doi: 10.1016/j.cjsc.2024.100333
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Yuhan Wu , Qing Zhao , Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271
Zihao Wang , Jing Xue , Zhicui Song , Jianxiong Xing , Aijun Zhou , Jianmin Ma , Jingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489
Chao Ma , Cong Lin , Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209