Citation: Kai GUO, Hao-Jie HUO, Jun LUO. Point Defect Engineering Boosting the Thermoelectric Properties of Layered 122 Zintl Compounds[J]. Chinese Journal of Structural Chemistry, ;2020, 39(5): 815-820. doi: 10.14102/j.cnki.0254–5861.2011–2830 shu

Point Defect Engineering Boosting the Thermoelectric Properties of Layered 122 Zintl Compounds

  • Corresponding author: Jun LUO, junluo@shu.edu.cn
  • Received Date: 30 March 2020
    Accepted Date: 5 May 2020

    Fund Project: the National Key Research and Development Program of China 2018YFA0702100the National Natural Science Foundation of China 21771123the National Natural Science Foundation of China 51772186the National Natural Science Foundation of China 51632005the Program of Introducing Talents of Discipline to Universities D16002

Figures(4)

  • The layered 122 Zintl compounds have become an intriguing class of thermoelectric materials due to the promising electronic transport properties and inherently low thermal conductivity, showing the typical characteristics of "phonon-glass electron-crystal". Owing to the unprecedented performance tunability, the thermoelectric properties of the layered-structure compounds are completive with some traditional thermoelectric materials. Point defects involving vacancy, aliovalent doping and equivalent alloying atoms have been introduced to further enhance the thermoelectric properties. This review emphasizes the effects of various point defects on the thermoelectric parameters, and provides perspective on the strategies for increasing the thermoelectric figure of merit zT, which are believed to be applicable for improving the thermoelectric properties of many other compounds.
  • 加载中
    1. [1]

      Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457-1461.  doi: 10.1126/science.1158899

    2. [2]

      Snyder, G. J.; Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105-114.  doi: 10.1038/nmat2090

    3. [3]

      Slack, G. A.; Rowe, D. M. ed. CRC Handbook of thermoelectrics. Boca Raton: CRC Press 1995, 407-440.

    4. [4]

      Sales, B. C.; Mandrus, D.; Williams, R. K. Filled skutterudite antimonides: a new class of thermoelectric materials. Science 1996, 272, 1325-1328.  doi: 10.1126/science.272.5266.1325

    5. [5]

      Shi, X.; Yang, J.; Salvador, J. R.; Chi, M.; Cho, J. Y.; Wang, H.; Bai, S.; Yang, J.; Zhang, W.; Chen, L. Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J. Am. Chem. Soc. 2011, 133, 7837-7846.  doi: 10.1021/ja111199y

    6. [6]

      Toberer, E. S.; May, A. F.; Melot, B. C.; Flage-Larsen, E.; Snyder, G. J. Electronic structure and transport in thermoelectric compounds AZn2Sb2 (A = Sr, Ca, Yb, Eu). Dalton Trans. 2010, 39, 1046-1054.  doi: 10.1039/B914172C

    7. [7]

      Guo, K.; Cao, Q. G.; Zhao, J. T. Zintl phase compounds AM2Sb2 (A = Ca, Sr, Ba, Eu, Yb; M = Zn, Cd) and their substitution variants: a class of potential thermoelectric materials. J. Rare Earth 2013, 31, 1029-1038.  doi: 10.1016/S1002-0721(12)60398-6

    8. [8]

      Pomrehn, G. S.; Zevalkink, A.; Zeier, W. G.; Walle, A. V. D.; Snyder, G. J. Defect-controlled electronic properties in AZn2Sb2 Zintl phases. Angew. Chem. Int. Ed. 2014, 53, 3422-3426.  doi: 10.1002/anie.201311125

    9. [9]

      Peng, W. Y.; Chanakian, S.; Zevalkink, A. Crystal chemistry and thermoelectric transport of layered AM2X2 compounds. Inorg. Chem. Front. 2018, 5, 1744-1759.  doi: 10.1039/C7QI00813A

    10. [10]

      Zhang, X.; Gu, H.; Zhang, Y.; Guo, L.; Yang, J.; Luo, S.; Lu, X.; Chen, K.; Chai, H.; Wang, H.; Zhang, X.; Zhou, X. Enhanced thermoelectric properties of YbZn2Sb2-xBix through a synergistic effect via Bi-doping. Chem. Eng. J. 2019, 374, 589–595.  doi: 10.1016/j.cej.2019.05.206

    11. [11]

      Zheng, L.; Li, W.; Sun, C.; Shi, X.; Zhang, X.; Pei, Y. Ternary thermoelectric AB2C2 Zintls. J. Alloys Compd. 2020, 821, 153497.  doi: 10.1016/j.jallcom.2019.153497

    12. [12]

      Guo, M. C.; Guo, F. K.; Zhu, J. B.; Yin, L.; Qin, H. X.; Zhang, Q.; Cai, W.; Sui, J. H. Enhanced thermoelectric properties of p-type CaMg2Bi2 via a synergistic effect originated from Zn and alkali-metal Co-doping. ACS Appl. Mater. Interfaces 2020, 12, 6015-6021.  doi: 10.1021/acsami.9b22333

    13. [13]

      Zhou, T.; Feng, Z.; Mao, J.; Jiang, J.; Zhu, H.; Singh, D. J.; Wang, C. Ren, Z. Thermoelectric properties of Zintl phase YbMg2Sb2. Chem. Mater. 2020, 32, 776-784.  doi: 10.1021/acs.chemmater.9b04131

    14. [14]

      Yang, X.; Gu, Y. Y.; Li, Y. P.; Guo, K.; Zhang, J. Y.; Zhao, J. T. The equivalent and aliovalent dopants boosting the thermoelectric properties of YbMg2Sb2. Sci. China Mater. 2020, 63, 437-443.  doi: 10.1007/s40843-019-1199-4

    15. [15]

      Toberer, E. S.; May, A. F.; Snyder, G. J. Zintl chemistry for designing high efficiency thermoelectric materials. Chem. Mater. 2010, 22, 624-634.  doi: 10.1021/cm901956r

    16. [16]

      Kauzlarich, S. M.; Brown, S. R.; Snyder, G. J. Zintl phases for thermoelectric devices. Dalton Trans. 2007, 21, 2099-2107.

    17. [17]

      Zevalkink, A.; Zeier, W. G.; Cheng, E.; Snyder, J.; Fleurial, J. P.; Bux, S. Nonstoichiometry in the Zintl phase Yb1-δZn2Sb2 as a route to thermoelectric optimization. Chem. Mater. 2014, 26, 5710-5717.  doi: 10.1021/cm502588r

    18. [18]

      Takagiwa, Y.; Sato, Y.; Zevalkink, A.; Kanazawa, I.; Kimura, K.; Isoda, Y.; Shinohara, Y. Thermoelectric properties of EuZn2Sb2 Zintl compounds: zT enhancement through Yb substitution for Eu. J. Alloys Compd. 2017, 703, 73-79.  doi: 10.1016/j.jallcom.2017.01.350

    19. [19]

      Guo, K.; Lin, J.; Li, Y.; Zhu, Y.; Li, X.; Yang, X.; Xing, J.; Yang, J.; Luo J.; Zhao, J. T. Suppressing the dynamic precipitation and lowering the thermal conductivity for stable and high thermoelectric performance in BaCu2Te2 based materials. J. Mater. Chem. A 2020, 8, 5323-5331.  doi: 10.1039/D0TA00245C

    20. [20]

      Wang, X.; Li, W.; Zhou, B.; Sun, C.; Zheng, L.; Tang, J.; Shi, X.; Pei, Y. Experimental revelation of multiband transport in heavily doped BaCd2Sb2 with promising thermoelectric performance. Mater. Today Phys. 2019, 8, 123-127.  doi: 10.1016/j.mtphys.2019.03.002

    21. [21]

      Kunioka, H.; Kihou, K.; Nishiate, H.; Yamamoto, A.; Usui, H.; Kurokib, K.; Lee, C. H. Thermoelectric properties of (Ba, K)Cd2As2 crystallized in the CaAl2Si2-type structure. Dalton Trans. 2018, 47, 16205-16210.  doi: 10.1039/C8DT02955E

    22. [22]

      Sun, C.; Shi, X.; Zheng, L.; Chen, B.; Li, W. Transport properties of p-type CaMg2Bi2 thermoelectrics. J. Mater. 2019, 5, 567-573.

    23. [23]

      Wang, X.; Li, W.; Wang, C.; Li, J.; Zhang, X. Y.; Zhou, B. Q.; Chen, Y.; Pei, Y. Z. Single parabolic band transport in p-type EuZn2Sb2 thermoelectrics. J. Mater. Chem. A 2017, 5, 24185-24192.  doi: 10.1039/C7TA08869H

    24. [24]

      Pei, Y.; Shi, X.; LaLonde, A.; Wang, H.; Chen, L.; Snyder, G. J. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 2011, 473, 66-69.  doi: 10.1038/nature09996

    25. [25]

      Zhang, J.; Song, L.; Madsen, G. K. H.; Fischer, K. F. F.; Zhang W.; Shi X.; Iversen, B. B. Designing high-performance layered thermoelectric materials through orbital engineering. Nat. Commun. 2016, 7, 10892.  doi: 10.1038/ncomms10892

    26. [26]

      Zheng, L.; Li, W.; Wang, X.; Pei, Y. Alloying for orbital alignment enables thermoelectric enhancement of EuCd2Sb2. J. Mater. Chem. A 2019, 7, 12773-12778.  doi: 10.1039/C9TA03502H

    27. [27]

      Wang, X.; Li, J.; Wang, C.; Zhou, B.; Zheng, L.; Gao, B.; Chen, Y.; Pei, Y. Orbital alignment for high performance thermoelectric YbCd2Sb2 alloys. Chem. Mater. 2018, 30, 5339-5345  doi: 10.1021/acs.chemmater.8b02155

    28. [28]

      Saparamadu, U.; Tan, X.; Song, S.; Ren, Z.; Sun, J.; Singh, D. J.; Shuai, J.; Jiang J.; Ren, Z. Achieving high-performance p-type SmMg2Bi2 thermoelectric materials through band engineering and alloying effects. J. Mater. Chem. A 2020, accepted. doi.org/10.1039/C9TA13224D.

    29. [29]

      Callaway, J.; von Baeyer, H. C. Effect of point imperfections on lattice thermal conductivity. Phys. Rev. 1960, 120, 1149-1154.  doi: 10.1103/PhysRev.120.1149

  • 加载中
    1. [1]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    2. [2]

      Zheyu LiHuwei LiYao LiXinyu FuHongxia YueQingxing YangJing FengXinyu WangHongjie Zhang . The effect of electron-phonon coupling on the photoluminescence properties of zinc-based halides. Chinese Chemical Letters, 2025, 36(4): 109800-. doi: 10.1016/j.cclet.2024.109800

    3. [3]

      Zhuoer Cai Yinan Zhang Xiu-Ni Hua Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426

    4. [4]

      Xinyu GuoChang LiWenjun DengYi ZhouYan ChenYushuang XuRui Li . Phase engineering and heteroatom incorporation enable defect-rich MoS2 for long life aqueous iron-ion batteries. Chinese Chemical Letters, 2025, 36(3): 109715-. doi: 10.1016/j.cclet.2024.109715

    5. [5]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    6. [6]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    7. [7]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    8. [8]

      Xiaxia LIUXiaofang MALuxia GUOXianda HANSisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269

    9. [9]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    10. [10]

      Hanying LiWee-Liat Ong . “Super-heterojunctioned” thermoelectric polymers. Chinese Chemical Letters, 2025, 36(2): 110523-. doi: 10.1016/j.cclet.2024.110523

    11. [11]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    12. [12]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    13. [13]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    14. [14]

      Jian Ji Jie Yan Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360

    15. [15]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    16. [16]

      Bin Chen Chaoyang Zheng Dehuan Shi Yi Huang Renxia Deng Yang Wei Zheyuan Liu Yan Yu Shenghong Zhong . p-d orbital hybridization induced by CuGa2 promotes selective N2 electroreduction. Chinese Journal of Structural Chemistry, 2025, 44(1): 100468-100468. doi: 10.1016/j.cjsc.2024.100468

    17. [17]

      Zhaorui SongQiulian HaoBing LiYuwei YuanShanshan ZhangYongkuan SuoHai-Hao HanZhen Cheng . NIR-Ⅱ fluorescence lateral flow immunosensor based on efficient energy transfer probe for point-of-care testing of tumor biomarkers. Chinese Chemical Letters, 2025, 36(1): 109834-. doi: 10.1016/j.cclet.2024.109834

    18. [18]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    19. [19]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    20. [20]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

Metrics
  • PDF Downloads(3)
  • Abstract views(290)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return