Interface Reconstruction Study by Functional Scanning Probe Microscope in Li-ion Battery Research
- Corresponding author: Hai-Biao CHEN, chenhb@pkusz.edu.cn Feng PAN, panfeng@pkusz.edu.cn #These authors contributed equally to this work
Citation: Lang-Lang JIA, Yu-Chen JI, Kai YANG, Zi-Jian WANG, Hai-Biao CHEN, Feng PAN. Interface Reconstruction Study by Functional Scanning Probe Microscope in Li-ion Battery Research[J]. Chinese Journal of Structural Chemistry, ;2020, 39(2): 200-205. doi: 10.14102/j.cnki.0254–5861.2011–2749
Lu, J.; Chen, Z.; Pan, F.; Cui, Y.; Amine, K. High-performance anode materials for rechargeable lithium-ion batteries. Electrochem. Energy Rev. 2018, 1, 35−53.
doi: 10.1007/s41918-018-0001-4
Hui, J.; Gossage, Z. T.; Sarbapalli, D.; Hernández-Burgos, K.; Rodríguez-López, J. Advanced electrochemical analysis for energy storage interfaces. Anal. Chem. 2019, 91, 60−83.
doi: 10.1021/acs.analchem.8b05115
Chen, X.; Lai, J.; Shen, Y.; Chen, Q.; Chen, L. Functional scanning force microscopy for energy nanodevices. Adv. Mater. 2018, 30, 1802490.
doi: 10.1002/adma.201802490
Wang, S.; Liu, Q.; Zhao, C.; Lv, F.; Qin, X.; Du, H.; Kang, F.; Li, B. Advances in understanding materials for rechargeable lithium batteries by atomic forcemicroscopy. Energy Environ. Mat. 2018, 1, 28−40.
doi: 10.1002/eem2.12002
Binnig, G.; Rohrer, H.; Gerber, C.; Weibel, E. 7×7 Reconstruction on Si(111) resolved in real space. Phys. Rev. Lett. 1983, 50, 120−123.
doi: 10.1103/PhysRevLett.50.120
Kalinin, S. V.; Dyck, O.; Balke, N.; Neumayer, S.; Tsai, W. Y.; Vasudevan, R.; Lingerfelt, D.; Ahmadi, M.; Ziatdinov, M.; McDowell, M. T.; Strelcov, E. Toward electrochemical studies on the nanometer and atomic scales: progress, challenges, and opportunities. ACS Nano. 2019, 13, 9735−9780.
doi: 10.1021/acsnano.9b02687
Lin, L.; Yang, K.; Tan, R.; Li, M.; Fu, S.; Liu, T.; Chen, H.; Pan, F. Effect of sulfur-containing additives on the formation of a solid-electrolyte interphase evaluated by in situ AFM and ex situ characterizations. J. Mater. Chem. A 2017, 5, 19364−19370.
doi: 10.1039/C7TA05469F
Liu, T.; Lin, L.; Bi, X.; Tian, L.; Yang, K.; Liu, J.; Li, M.; Chen, Z.; Lu, J.; Amine, K.; Xu, K.; Pan, F. In situ quantification of interphasial chemistry in Li-ion battery. Nat. Nanotechnol. 2019, 14, 50−60.
doi: 10.1038/s41565-018-0284-y
Yang, K.; Jia, L.; Liu, X.; Wang, Z.; Wang, Y.; Li, Y.; Chen, H.; Wu, B.; Yang, L.; Pan, F. Revealing the anion intercalation behavior and surface evolution of graphite in dual-ion batteries via in situ AFM. Nano. Res. 2020.
Xu, W.; Vegunta, S. S. S.; Flake, J. C. Surface-modified silicon nanowire anodes for lithium-ion batteries. J. Power Sources 2011, 196, 8583−8589.
doi: 10.1016/j.jpowsour.2011.05.059
Zhang, J.; Wang, R.; Yang, X. C.; Lu, W.; Wu, X. D.; Wang, X. P.; Li, H.; Chen, L. W. Direct observation of inhomogeneous solid electrolyte interphase on MnO anode with atomic force microscopy and spectroscopy. Nano. Letters 2012, 12, 2153−2157.
doi: 10.1021/nl300570d
Chen, Y.; Yu, Q.; Xu, G.; Zhao, G.; Li, J.; Hong, Z.; Lin, Y.; Dong, C. L.; Huang, Z. Chen, Y.; Yu, Q.; Xu, G.; Zhao, G.; Li, J.; Hong, Z.; Lin, Y.; Dong, C. L.; Huang, Z. In situ observation of the insulator-to-metal transition and nonequilibrium phase transition for Li1-xCoO2 films with preferred (003) orientation nanorods. ACS Appl. Mater. Interfaces 2019, 11, 33043−33053
doi: 10.1021/acsami.9b11140
Verde, M. G.; Baggetto, L.; Balke, N.; Veith, G. M.; Seo, J. K.; Wang, Z.; Meng, Y. S. Elucidating the phase transformation of Li4Ti5O12 lithiation at the nanoscale. ACS Nano. 2016, 10, 4312−4321.
doi: 10.1021/acsnano.5b07875
Kang, H.; Lee, J.; Rodgers, T.; Shim, J. H.; Lee, S. Electrical conductivity of delithiated lithium cobalt oxides: conductive atomic force microscopy and density functional theory study. J. Phys. Chem. C 2019, 123, 17703−17710.
doi: 10.1021/acs.jpcc.9b03232
Zhu, X.; Revilla, R. I.; Hubin, A. Direct correlation between local surface potential measured by Kelvin probe force microscope and electrochemical potential of LiNi0.80Co0.15Al0.05O2 cathode at different state of charge. J. Phys. Chem. C 2018, 122, 28556−28563.
doi: 10.1021/acs.jpcc.8b10364
Jacobs, H. O.; Leuchtmann, P.; Homan, O. J.; Stemmer, A. Resolution and contrast in Kelvin probe force microscopy. J. Appl. Phys. 1998, 84, 1168−1173.
doi: 10.1063/1.368181
Luchkin, S. Y.; Amanieu, H. Y.; Rosato, D.; Kholkin, A. L. Li distribution in graphite anodes: a Kelvin probe force microscopy approach. J. Power Sources 2014, 268, 887−894.
doi: 10.1016/j.jpowsour.2014.06.143
Nagpure, S. C.; Bhushan, B.; Babu, S. S. Surface potential measurement of aged Li-ion batteries using Kelvin probe microscopy. J. Power Sources 2011, 196, 1508−1512.
doi: 10.1016/j.jpowsour.2010.08.031
Masuda, H.; Ishida, N.; Ogata, Y.; Ito, D.; Fujita, D. Internal potential mapping of charged solid-state-lithium ion batteries using in situ Kelvin probe force microscopy. Nanoscale 2017, 9, 893−898.
doi: 10.1039/C6NR07971G
Zhu, J.; Zeng, K.; Lu, L. In-situ nanoscale mapping of surface potential in all-solid-state thin film Li-ion battery using Kelvin probe force microscopy. J. Appl. Phys. 2012, 111, 1−7.
Biao Fang , Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347
Haixia Wu , Kailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Yu ZHANG , Fangfang ZHAO , Cong PAN , Peng WANG , Liangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412
Jie Zhou , Quanyu Li , Xiaomeng Hu , Weifeng Wei , Xiaobo Ji , Guichao Kuang , Liangjun Zhou , Libao Chen , Yuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143
Chaochao Wei , Ru Wang , Zhongkai Wu , Qiyue Luo , Ziling Jiang , Liang Ming , Jie Yang , Liping Wang , Chuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717
Yue Qian , Zhoujia Liu , Haixin Song , Ruize Yin , Hanni Yang , Siyang Li , Weiwei Xiong , Saisai Yuan , Junhao Zhang , Huan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785
Caixia Li , Yi Qiu , Yufeng Zhao , Wuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846
Miaomiao Li , Mengwei Yuan , Xingzi Zheng , Kunyu Han , Genban Sun , Fujun Li , Huifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265
Xiaoxing Ji , Xiaojuan Li , Chenggang Wang , Gang Zhao , Hongxia Bu , Xijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388
Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391
Hengying Xiang , Nanping Deng , Lu Gao , Wen Yu , Bowen Cheng , Weimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182
Tao Long , Peng Chen , Bin Feng , Caili Yang , Kairong Wang , Yulei Wang , Can Chen , Yaping Wang , Ruotong Li , Meng Wu , Minhuan Lan , Wei Kong Pang , Jian-Fang Wu , Yuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267
Lei Wan , Yizhou Tong , Xi Lu , Yao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283
Jiao Li , Chenyang Zhang , Chuhan Wu , Yan Liu , Xuejian Zhang , Xiao Li , Yongtao Li , Jing Sun , Zhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Kebo Xie , Qian Zhang , Fei Ye , Jungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028
Chen Li , Ziyuan Zhao , Shouyun Yu . Photoredox-catalyzed C-glycosylation of peptides with glycosyl bromides. Chinese Chemical Letters, 2024, 35(6): 109128-. doi: 10.1016/j.cclet.2023.109128
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
Shulei Hu , Yu Zhang , Xiong Xie , Luhan Li , Kaixian Chen , Hong Liu , Jiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408