Citation: Lang-Lang JIA, Yu-Chen JI, Kai YANG, Zi-Jian WANG, Hai-Biao CHEN, Feng PAN. Interface Reconstruction Study by Functional Scanning Probe Microscope in Li-ion Battery Research[J]. Chinese Journal of Structural Chemistry, ;2020, 39(2): 200-205. doi: 10.14102/j.cnki.0254–5861.2011–2749 shu

Interface Reconstruction Study by Functional Scanning Probe Microscope in Li-ion Battery Research

  • Corresponding author: Hai-Biao CHEN, chenhb@pkusz.edu.cn Feng PAN, panfeng@pkusz.edu.cn
  • #These authors contributed equally to this work
  • Received Date: 26 January 2020
    Accepted Date: 2 February 2020

    Fund Project: the National Key R&D Program of China 2016YFB0700600Soft Science Research Project of Guangdong Province 2017B030301013Shenzhen Science and Technology Research Grant ZDSYS201707281026184

Figures(2)

  • Interfacial reaction is a critical factor of lithium ion battery, but is also complicated and difficult to characterize. Scanning probe microscope (SPM) is one of the most effective tools to reveal the interface reconstruction and interfacial properties (including the morphologies, mechanical properties and electricity properties) of energy material at nanoscale and at real time. In this paper, we briefly summarized the principles of AFM, conductive AFM(C-AFM) and Kelvin probe force microscope (KPFM), as well as their application to investigate the interface reconstruction of lithium-ion battery electrode material.
  • 加载中
    1. [1]

      Lu, J.; Chen, Z.; Pan, F.; Cui, Y.; Amine, K. High-performance anode materials for rechargeable lithium-ion batteries. Electrochem. Energy Rev. 2018, 1, 35−53.  doi: 10.1007/s41918-018-0001-4

    2. [2]

      Hui, J.; Gossage, Z. T.; Sarbapalli, D.; Hernández-Burgos, K.; Rodríguez-López, J. Advanced electrochemical analysis for energy storage interfaces. Anal. Chem. 2019, 91, 60−83.  doi: 10.1021/acs.analchem.8b05115

    3. [3]

      Chen, X.; Lai, J.; Shen, Y.; Chen, Q.; Chen, L. Functional scanning force microscopy for energy nanodevices. Adv. Mater. 2018, 30, 1802490.  doi: 10.1002/adma.201802490

    4. [4]

      Wang, S.; Liu, Q.; Zhao, C.; Lv, F.; Qin, X.; Du, H.; Kang, F.; Li, B. Advances in understanding materials for rechargeable lithium batteries by atomic forcemicroscopy. Energy Environ. Mat. 2018, 1, 28−40.  doi: 10.1002/eem2.12002

    5. [5]

      Binnig, G.; Rohrer, H.; Gerber, C.; Weibel, E. 7×7 Reconstruction on Si(111) resolved in real space. Phys. Rev. Lett. 1983, 50, 120−123.  doi: 10.1103/PhysRevLett.50.120

    6. [6]

      Kalinin, S. V.; Dyck, O.; Balke, N.; Neumayer, S.; Tsai, W. Y.; Vasudevan, R.; Lingerfelt, D.; Ahmadi, M.; Ziatdinov, M.; McDowell, M. T.; Strelcov, E. Toward electrochemical studies on the nanometer and atomic scales: progress, challenges, and opportunities. ACS Nano. 2019, 13, 9735−9780.  doi: 10.1021/acsnano.9b02687

    7. [7]

      Lin, L.; Yang, K.; Tan, R.; Li, M.; Fu, S.; Liu, T.; Chen, H.; Pan, F. Effect of sulfur-containing additives on the formation of a solid-electrolyte interphase evaluated by in situ AFM and ex situ characterizations. J. Mater. Chem. A 2017, 5, 19364−19370.  doi: 10.1039/C7TA05469F

    8. [8]

      Liu, T.; Lin, L.; Bi, X.; Tian, L.; Yang, K.; Liu, J.; Li, M.; Chen, Z.; Lu, J.; Amine, K.; Xu, K.; Pan, F. In situ quantification of interphasial chemistry in Li-ion battery. Nat. Nanotechnol. 2019, 14, 50−60.  doi: 10.1038/s41565-018-0284-y

    9. [9]

      Yang, K.; Jia, L.; Liu, X.; Wang, Z.; Wang, Y.; Li, Y.; Chen, H.; Wu, B.; Yang, L.; Pan, F. Revealing the anion intercalation behavior and surface evolution of graphite in dual-ion batteries via in situ AFM. Nano. Res. 2020.

    10. [10]

      Xu, W.; Vegunta, S. S. S.; Flake, J. C. Surface-modified silicon nanowire anodes for lithium-ion batteries. J. Power Sources 2011, 196, 8583−8589.  doi: 10.1016/j.jpowsour.2011.05.059

    11. [11]

      Zhang, J.; Wang, R.; Yang, X. C.; Lu, W.; Wu, X. D.; Wang, X. P.; Li, H.; Chen, L. W. Direct observation of inhomogeneous solid electrolyte interphase on MnO anode with atomic force microscopy and spectroscopy. Nano. Letters 2012, 12, 2153−2157.  doi: 10.1021/nl300570d

    12. [12]

      Chen, Y.; Yu, Q.; Xu, G.; Zhao, G.; Li, J.; Hong, Z.; Lin, Y.; Dong, C. L.; Huang, Z. Chen, Y.; Yu, Q.; Xu, G.; Zhao, G.; Li, J.; Hong, Z.; Lin, Y.; Dong, C. L.; Huang, Z. In situ observation of the insulator-to-metal transition and nonequilibrium phase transition for Li1-xCoO2 films with preferred (003) orientation nanorods. ACS Appl. Mater. Interfaces 2019, 11, 33043−33053  doi: 10.1021/acsami.9b11140

    13. [13]

      Verde, M. G.; Baggetto, L.; Balke, N.; Veith, G. M.; Seo, J. K.; Wang, Z.; Meng, Y. S. Elucidating the phase transformation of Li4Ti5O12 lithiation at the nanoscale. ACS Nano. 2016, 10, 4312−4321.  doi: 10.1021/acsnano.5b07875

    14. [14]

      Kang, H.; Lee, J.; Rodgers, T.; Shim, J. H.; Lee, S. Electrical conductivity of delithiated lithium cobalt oxides: conductive atomic force microscopy and density functional theory study. J. Phys. Chem. C 2019, 123, 17703−17710.  doi: 10.1021/acs.jpcc.9b03232

    15. [15]

      Zhu, X.; Revilla, R. I.; Hubin, A. Direct correlation between local surface potential measured by Kelvin probe force microscope and electrochemical potential of LiNi0.80Co0.15Al0.05O2 cathode at different state of charge. J. Phys. Chem. C 2018, 122, 28556−28563.  doi: 10.1021/acs.jpcc.8b10364

    16. [16]

      Jacobs, H. O.; Leuchtmann, P.; Homan, O. J.; Stemmer, A. Resolution and contrast in Kelvin probe force microscopy. J. Appl. Phys. 1998, 84, 1168−1173.  doi: 10.1063/1.368181

    17. [17]

      Luchkin, S. Y.; Amanieu, H. Y.; Rosato, D.; Kholkin, A. L. Li distribution in graphite anodes: a Kelvin probe force microscopy approach. J. Power Sources 2014, 268, 887−894.  doi: 10.1016/j.jpowsour.2014.06.143

    18. [18]

      Nagpure, S. C.; Bhushan, B.; Babu, S. S. Surface potential measurement of aged Li-ion batteries using Kelvin probe microscopy. J. Power Sources 2011, 196, 1508−1512.  doi: 10.1016/j.jpowsour.2010.08.031

    19. [19]

      Masuda, H.; Ishida, N.; Ogata, Y.; Ito, D.; Fujita, D. Internal potential mapping of charged solid-state-lithium ion batteries using in situ Kelvin probe force microscopy. Nanoscale 2017, 9, 893−898.  doi: 10.1039/C6NR07971G

    20. [20]

      Zhu, J.; Zeng, K.; Lu, L. In-situ nanoscale mapping of surface potential in all-solid-state thin film Li-ion battery using Kelvin probe force microscopy. J. Appl. Phys. 2012, 111, 1−7.

  • 加载中
    1. [1]

      Biao Fang Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347

    2. [2]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    3. [3]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    4. [4]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    5. [5]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    6. [6]

      Chaochao WeiRu WangZhongkai WuQiyue LuoZiling JiangLiang MingJie YangLiping WangChuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717

    7. [7]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    8. [8]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    9. [9]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    10. [10]

      Xiaoxing JiXiaojuan LiChenggang WangGang ZhaoHongxia BuXijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388

    11. [11]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    12. [12]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    13. [13]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

    14. [14]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    15. [15]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

    16. [16]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    17. [17]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    18. [18]

      Chen LiZiyuan ZhaoShouyun Yu . Photoredox-catalyzed C-glycosylation of peptides with glycosyl bromides. Chinese Chemical Letters, 2024, 35(6): 109128-. doi: 10.1016/j.cclet.2023.109128

    19. [19]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    20. [20]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

Metrics
  • PDF Downloads(6)
  • Abstract views(216)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return