Citation: Yi-Lan CHEN, Yu-Xian XU, Dai-Feng LIN, Yong-Jin LUO, Hun XUE, Qing-Hua CHEN. Insight into Superior Visible Light Photocatalytic Activity for Degradation of Dye over Corner-truncated Cubic Ag2O Decorated TiO2 Hollow Nanofibers[J]. Chinese Journal of Structural Chemistry, ;2020, 39(3): 588-597. doi: 10.14102/j.cnki.0254–5861.2011–2733 shu

Insight into Superior Visible Light Photocatalytic Activity for Degradation of Dye over Corner-truncated Cubic Ag2O Decorated TiO2 Hollow Nanofibers

  • Corresponding author: Qing-Hua CHEN, cqhuar@fjnu.edu.cn
  • Received Date: 9 January 2020
    Accepted Date: 10 February 2020

    Fund Project: the National Natural Science Foundation of China 21407025the Natural Science Foundation of Fujian Province 2016J01047the Projects of Fujian Provincial Department of Education JT180350

Figures(10)

  • Ag2O/TiO2 heterostructure has been constructed by loading corner-truncated cubic Ag2O on the TiO2 hollow nanofibers via an electrospinning-precipitation method. Compared to individual Ag2O and TiO2, Ag2O/TiO2 heterostructure exhibits obviously enhanced photocatalytic activity for the photodegradation of methyl orange (MO) under visible light irradiation. The composite with molar ratio of Ag2O to TiO2 at 4:10 exhibits the best photocatalytic performance with MO degraded 93% in 6 min. The superior activity is mainly attributed to the surface plasmon resonance (SPR) effect of metallic Ag in-situ produced during the photocatalytic process, which can favor electron transfer to the conduction band of TiO2. This leads to the efficient separation of photogenerated carriers, thus a superior photodegradation activity. Moreover, the energy band alignments of Ag2O/TiO2 heterostructure are calculated, which provides strong support for the proposed mechanism.
  • 加载中
    1. [1]

      Haldorai, Y.; Shim, J. J. An efficient removal of methyl orange dye from aqueous solution by adsorption onto chitosan/MgO composite: a novel reusable adsorbent. Appl. Surf. Sci. 2014, 292, 447–453.  doi: 10.1016/j.apsusc.2013.11.158

    2. [2]

      Robati, D.; Mirza, B.; Rajabi, M.; Moradi, O.; Tyagi, I.; Agarwal, S.; Gupta, V. K. Removal of hazardous dyes-BR 12 and methyl orange using graphene oxide as an adsorbent from aqueous phase. Chem. Eng. J. 2016, 284, 687–697.  doi: 10.1016/j.cej.2015.08.131

    3. [3]

      Yagub, M. T.; Sen, T. K.; Afroze, S.; Ang, H. M. Dye and its removal from aqueous solution by adsorption: a review. Adv. Colloid Interfac. 2014, 209, 172–184.  doi: 10.1016/j.cis.2014.04.002

    4. [4]

      Yagub, M. T.; Sen, T. K.; Ang, H. M. Equilibrium, kinetics, and thermodynamics of methylene blue adsorption by pine tree leaves. Water Air Soil. Pollut. 2012, 223, 5267–5282.  doi: 10.1007/s11270-012-1277-3

    5. [5]

      Gu, Q.; Zhao, W.; Yuan, J. Adsorption and photodegradation behaviors of in-situ growth TiO2 films with various nano-structures. Chem. Phys. Lett. 2019, 736, 136804–136812.  doi: 10.1016/j.cplett.2019.136804

    6. [6]

      Priyanka, K. P.; Sankararaman, S.; Balakrishna, K. M.; Varghese, T. Enhanced visible light photocatalysis using TiO2/phthalocyanine nanocomposites for the degradation of selected industrial dyes. J. Alloy. Compd. 2017, 720, 541–549.  doi: 10.1016/j.jallcom.2017.05.308

    7. [7]

      Dong, R. L.; Na, C.; Zhang, H. P.; Chen, Z. D.; Jin, C. C. TiO2/SiO2 mesoporous microspheres with intelligently controlled texture. Mater. Design 2016, 89830–89838.

    8. [8]

      Mohaghegh, N.; Kamrani, S.; Tasviri, M.; Elahifard, M.; Gholami, M. Nanoporous Ag2O photocatalysts based on copper terephthalate metal-organic frameworks. J. Mater. Sci. 2015, 50, 4536–4546.  doi: 10.1007/s10853-015-9003-3

    9. [9]

      Wen, X. J.; Niu, C. G.; Zhang, L.; Liang, C.; Zeng, G. M. A novel Ag2O/CeO2 heterojunction photocatalysts for photocatalytic degradation of enrofloxacin: possible degradation pathways, mineralization activity and an in depth mechanism insight. Appl. Catal. B: Environ. 2018, 221, 701–714.  doi: 10.1016/j.apcatb.2017.09.060

    10. [10]

      Sarkar, D.; Ghosh, C. K.; Mukherjee, S.; Chattopadhyay, K. K. Three dimensional Ag2O/TiO2 type-Ⅱ (p–n) nanoheterojunctions for superior photocatalytic activity. Acs. Appl. Mater. Inter. 2012, 5, 331–337.

    11. [11]

      Zhou, W.; Liu, H.; Wang, J.; Liu, D.; Du, G.; Cui, J. Ag2O/TiO2 nanobelts heterostructure with enhanced ultraviolet and visible photocatalytic activity. ACS Appl. Mater. Inter. 2010, 2, 2385–2392.  doi: 10.1021/am100394x

    12. [12]

      Zhou, W.; Liu, H.; Wang, J.; Liu, D.; Du, G.; Han, S.; Lin, J.; Wang, R. Interface dominated high photocatalytic properties of electrostatic self-assembled Ag2O/TiO2 heterostructure. Phys. Chem. Chem. Phys. 2010, 12, 15119–15123.  doi: 10.1039/c0cp00734j

    13. [13]

      Xu, W.; Wang, S. Q.; Zhang, Q. Y.; Ma, C. Y.; Li, X. N.; Wang, Q.; Wen, D. H. Abnormal oxidation of Ag films and its application to fabrication ofphotocatalytic films with a-TiO2/h-Ag2O heterostructure. J. Phys. Chem. C 2017, 121, 9901–9909.  doi: 10.1021/acs.jpcc.7b01229

    14. [14]

      Yu, C.; Li, G.; Kumar, S.; Yang, K.; Jin, R. Phase transformation synthesis of novel Ag2O/Ag2CO3 heterostructures with high visible light efficiency in photocatalytic degradation of pollutants. Adv. Mater. 2014, 26, 892–898.  doi: 10.1002/adma.201304173

    15. [15]

      Xu, Y.; Lin, D.; Liu, X.; Luo, Y.; Xue, H.; Huang, B.; Qian, Q.; Chen, Q. TiO2 hollow nanofibers grafted Ag/AgCl with more AgCl {111} facet for enhanced photocatalytic activity. Mater. Lett. 2018, 215, 250–253.  doi: 10.1016/j.matlet.2017.12.100

    16. [16]

      Liang, N.; Wang, M.; Jin, L.; Huang, S.; Chen, W.; Xu, M.; He, Q.; Zai, J.; Fang, N.; Qian, X. Highly efficient Ag2O/Bi2O2CO3 p-n heterojunction photocatalysts with improved visible-light responsive activity. ACS. Appl. Mater. Inter. 2014, 6, 11698–11705.  doi: 10.1021/am502481z

    17. [17]

      Parayil, S. K.; Kibombo, H. S.; Wu, C. M.; Peng, R.; Baltrusaitis, J.; Koodali, R. T. Enhanced photocatalytic water splitting activity of carbon-modified TiO2 composite materials synthesized by a green synthetic approach. Int. J. Hydrogen Energy 2012, 37, 8257–8267.  doi: 10.1016/j.ijhydene.2012.02.067

    18. [18]

      He, H.; Miao, Y.; Du, Y.; Zhao, J.; Liu, Y.; Yang, P. Ag2O nanoparticle-decorated TiO2 nanobelts for improved photocatalytic performance. Ceram. Int. 2016, 12, 4297–4302.

    19. [19]

      Phan, T. N.; Nikoloski A. N.; Bahri, P. A. Facile fabrication of perovskite-incorporated hierarchically mesoporous/macroporous silica for efficient photoassisted-Fenton degradation of dye. Appl. Surf. Sci. 2019, 491, 488–496.  doi: 10.1016/j.apsusc.2019.06.133

    20. [20]

      Sarkar, D.; Ghosh, C. K.; Mukherjee, S.; Chattopadhyay, K. K. Three dimensional Ag2O/TiO2 type-Ⅱ (p-n) nanoheterojunctions for superior photocatalytic activity. ACS Appl. Mater. Inter. 2013, 5, 331–337.  doi: 10.1021/am302136y

    21. [21]

      Hua, H.; Xi, Y.; Zhao, Z.; Xie, X.; Hu, C.; Liu, H. Gram-scale wet chemical synthesis of Ag2O/TiO2 aggregated sphere heterostructure with high photocatalytic activity. Mater. Lett. 2013, 91, 81–83.  doi: 10.1016/j.matlet.2012.09.068

    22. [22]

      Paul, K. K.; Ghosh, R.; Giri, P. K. Mechanism of strong visible light photocatalysis by Ag2O-nanoparticle-decorated monoclinic TiO2(B) porous nanorods. Nanotechnology 2016, 27, 315703–315717.  doi: 10.1088/0957-4484/27/31/315703

    23. [23]

      Zhen, Y.; Wang, J.; Fu, F. The novel Z-scheme ternary-component Ag/AgI/α-MoO3 catalyst with excellent visible-light photocatalytic oxidative desulfurization performance for model fuel. Nanomaterials 2019, 9, 1054–1068.  doi: 10.3390/nano9071054

    24. [24]

      Zheng, W.; Chen, N. N.; Gao, Y. Heterometallic Pb–Ag iodides from 1-D chains to 2-D layers induced by transition metal complex cations: syntheses, crystal structures and photocatalytic properties. Eur. J. Inorg. Chem. 2019, 44, 4752–4759.

    25. [25]

      Kovacic, M.; Papac, J.; Kusic, H. Degradation of polar and non-polar pharmaceutical pollutants in water by solar assisted photocatalysis using hydrothermal TiO2-SnS2. Chem. Eng. J. 2020, 382, 122826–122838.  doi: 10.1016/j.cej.2019.122826

  • 加载中
    1. [1]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    2. [2]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    3. [3]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    4. [4]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    5. [5]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    6. [6]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    7. [7]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    8. [8]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    9. [9]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    10. [10]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    11. [11]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    12. [12]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    13. [13]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    14. [14]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    15. [15]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    16. [16]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    17. [17]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    18. [18]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    19. [19]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    20. [20]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

Metrics
  • PDF Downloads(2)
  • Abstract views(220)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return