Citation: Ming-Xin LI, Ren-Quan GUAN, Jia-Xin LI, Zhao ZHAO, Jun-Kai ZHANG, Cheng-Cheng DONG, Yun-Feng QI, Hong-Ju ZHAI. Performance and Mechanism Research of Au-HSTiO2 on Photocatalytic Hydrogen Production[J]. Chinese Journal of Structural Chemistry, ;2020, 39(8): 1437-1443. doi: 10.14102/j.cnki.0254–5861.2011–2612 shu

Performance and Mechanism Research of Au-HSTiO2 on Photocatalytic Hydrogen Production

  • Corresponding author: Yun-Feng QI, qiyunfeng911@qq.com
  • Received Date: 20 September 2019
    Accepted Date: 24 December 2019

    Fund Project: the National Natural Science Foundation of China 31540035the National Natural Science Foundation of China 61308095the National Natural Science Foundation of China 21801092the National Natural Science Foundation of China 11904128the Program for the Development of Science and Technology of Jilin Province 20180520002JHthe Program for the Development of Science and Technology of Jilin Province 20190103100JHthe 13th Five-Year Program for Science and Technology of Education Department of Jilin Province JJKH20180769KJthe 13th Five-Year Program for Science and Technology of Education Department of Jilin Province JJKH20180778KJthe Graduate Innovation Project of Jilin Normal University 201941

Figures(8)

  • In this paper, we report our attempts to raise the efficiency of liquid reduction method when using high specific surface area TiO2 (HSTiO2) by doping Au. Characterization of Au-HSTiO2 was conducted via XRD, UV-vis, SEM, and photocurrent intensity. The experimental results show that Au-HSTiO2 exhibits prominently higher photocatalytic hydrogen production than TiO2 and HSTiO2. Enhanced photosynthetic hydrogen production ability of Au-HSTiO2 should be attributed to the presence of abundant surface active sites of HSTiO2, remarkably extending electronic holes in Au doping. This study provides a promising photosynthetic material for hydrogen production.
  • 加载中
    1. [1]

      Kruczek, G.; Przybyła, G.; Ziółkowski, Ł.; Adamczyk, W. P. Comparative assessment of the application of methane and biogas in energy production: an experimental and numerical investigation. Renew. Energy 2019, 143, 1519–1530.  doi: 10.1016/j.renene.2019.05.087

    2. [2]

      Dostanić, J.; Lončarević, D.; Pavlović, V. B.; Papan, J.; Nedeljković, J. M. Efficient photocatalytic hydrogen production over titanate/titania nanostructures modified with nickel. Ceram. Int. 2019, 45, 19447–19455.  doi: 10.1016/j.ceramint.2019.06.200

    3. [3]

      Chen, K.; Zhang, S.; Peng, W.; Qian, X.; Huang, J. Modification of g-C3N4 quantum dots by Ni–Ni3C@C nanoparticles for hydrogen production. J. Phys. Chem. Solids 2019, 133, 100–107.  doi: 10.1016/j.jpcs.2019.05.009

    4. [4]

      Tang, G.; Li, H.; Cheng, C. Au nanoparticles embedded in BiVO4 films photoanode with enhanced photoelectrochemical performance. Nanotechnology 2019, 30, 445402–11.  doi: 10.1088/1361-6528/ab37ee

    5. [5]

      Son, S.; Lee, J. M.; Kim, S. J.; Kim, H.; Jin, X.; Wang, K. K.; Kim, M.; Hwang, J. W.; Choi, W.; Kim, Y. R.; Kim, H.; Hwang, S. J. Understanding the relative efficacies and versatile roles of 2D conductive nanosheets in hybrid-type photocatalyst. Appl. Catal. B-Environ. 2019, 257, 117875–9.  doi: 10.1016/j.apcatb.2019.117875

    6. [6]

      Huang, H.; Jin, Y.; Chai, Z.; Gu, X.; Liang, Y.; Li, Q.; Liu, H.; Jiang, H.; Xu, D. Surface charge-induced activation of Ni-loaded CdS for efficient and robust photocatalytic dehydrogenation of methanol. Appl. Catal. B-Environ. 2019, 257, 117869–8.  doi: 10.1016/j.apcatb.2019.117869

    7. [7]

      Yang, Y.; Li, X.; Lu, C.; Huang, W. g-C3N4 Nanosheets coupled with TiO2 nanosheets as 2D/2D heterojunction photocatalysts toward high photocatalytic activity for hydrogen production. Catal. Lett. 2019, 149, 2930–2939.  doi: 10.1007/s10562-019-02805-8

    8. [8]

      Hunge, Y. M.; Yadav, A. A.; Mathe, V. L. Photocatalytic hydrogen production using TiO2 nanogranules prepared by hydrothermal route. Catal. Lett. 2019, 731, 136582–4.

    9. [9]

      Kumar, M.; Negi, K.; Chauhan, S.; Umar, A.; Kumar, R.; Masuda, Y.; Chauhan, M. S.; Rajni. Synthesis, characterization, photocatalytic and sensing properties of Mn-doped ZnO nanoparticles. J. Nanosci. Nanotechnol. 2019, 19, 8095–8103.  doi: 10.1166/jnn.2019.16758

    10. [10]

      Khan, M. A. M.; Siwach, R.; Kumar, S.; Alhazaa, A. N. Role of Fe doping in tuning photocatalytic and photoelectrochemical properties of TiO2 for photodegradation of methylene blue. Opt. Laser Technol. 2019, 118, 170–178.  doi: 10.1016/j.optlastec.2019.05.012

    11. [11]

      Fajrina, N.; Tahir, M. Engineering approach in stimulating photocatalytic H2 production in a slurry and monolithic photoreactor systems using Ag-bridged Z-scheme pCN/TiO2 nanocomposite. Chem. Eng. J. 2019, 374, 1076–1095.  doi: 10.1016/j.cej.2019.06.011

    12. [12]

      Yao, L.; Wang, H.; Zhang, Y.; Wang, S.; Liu, X. Fabrication of N doped TiO2/C nanocomposites with hierarchical porous structure and high photocatalytic activity. Microporous Mesoporous Mat. 2019, 288, 109604–6.  doi: 10.1016/j.micromeso.2019.109604

    13. [13]

      Ida, S.; Wilson, P.; Neppolian, B.; Sathish, M.; Karthik, P.; Ravi, P. Ultrasonically aided selective stabilization of pyrrolic type nitrogen by one pot nitrogen doped and hydrothermally reduced graphene oxide/titania nanocomposite (N-TiO2/N-RGO) for H2 production. Ultrason. Sonochem. 2019, 57, 62–72.  doi: 10.1016/j.ultsonch.2019.04.041

    14. [14]

      Bae, J. Y.; Jang, S. G. Preparation and characterization of CuO-TiO2 composite hollow nanospheres with enhanced photocatalytic activity under visible light irradiation. J. Nanosci. Nanotechnol. 2019, 19, 6363–6368.  doi: 10.1166/jnn.2019.17050

    15. [15]

      Cui, L.; Song, Y. H.; Wang, F. K.; Sheng, Y.; Zou, H. F. Electrospinning synthesis of SiO2-TiO2 hybrid nanofibers with large surface area and excellent photocatalytic activity. Appl. Surf. Sci. 2019, 488, 284–292.  doi: 10.1016/j.apsusc.2019.05.151

    16. [16]

      Piña-Díaz, A. J.; Torres-Torres, D.; Trejo-Valdez, M.; Torres-SanMiguel, C. R.; Martínez-González, C. L.; Torres-Torres, C. Decision making two-wave mixing with rotating TiO2-supported Au-Pt nanoparticles. Opt. Laser Technol. 2019, 119, 105638–7.  doi: 10.1016/j.optlastec.2019.105638

    17. [17]

      Hassanzadeh-Tabrizi, S. A.; Nguyen, C. C.; Do, T. O. Synthesis of Fe2O3/Pt/Au nanocomposite immobilized on g-C3N4 for localized plasmon photocatalytic hydrogen evolution. Appl. Surf. Sci. 2019, 489, 741–754.  doi: 10.1016/j.apsusc.2019.06.010

    18. [18]

      Matsubara, K.; Inoue, M.; Hagiwara, H.; Abe, T. Photocatalytic water splitting over Pt-loaded TiO2 (Pt/TiO2) catalysts prepared by the polygonal barrel-sputtering method. Appl. Catal. B-Environ. 2019, 254, 7–14.  doi: 10.1016/j.apcatb.2019.04.075

    19. [19]

      Pincella, F.; Isozaki, K.; Miki, K. A visible light-driven plasmonic photocatalyst. Light-Sci. Appl. 2014, 3, e133–6.  doi: 10.1038/lsa.2014.14

    20. [20]

      Ma, X. C.; Dai, Y.; Yu, L.; Huang, B. B. Energy transfer in plasmonic photocatalytic composites. Light-Sci. Appl. 2016, 5, e16017–6.  doi: 10.1038/lsa.2016.17

    21. [21]

      Sun, M. L.; Liu, X. L.; Zhao, G. D.; Kong, W. C.; Xuan, J. Y.; Tan, S. G.; Sun, Y. P.; Wei, S. L.; Ren, J. F.; Yin, G. C. Sn4+ doping combined with hydrogen treatment for CdS/TiO2 photoelectrodes: an efficient strategy to improve quantum dots loading and charge transport for high photoelectrochemical performance. J. Power Sources 2019, 430, 80–89.  doi: 10.1016/j.jpowsour.2019.05.019

    22. [22]

      Zhao, G. D.; Sun, M. L.; Liu, X. L.; Xuan, J. Y.; Kong, W. C.; Zhang, R. N.; Sun, Y. P.; Jia, F. C.; Yin, G. C.; Liu, B. Fabrication of CdS quantum dots sensitized ZnO nanorods/TiO2 nanosheets hierarchical heterostructure films for enhanced photoelectrochemical performance. Electrochim. Acta 2019, 304, 334–34.  doi: 10.1016/j.electacta.2019.03.022

  • 加载中
    1. [1]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    2. [2]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    3. [3]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    4. [4]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    5. [5]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    6. [6]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    7. [7]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    8. [8]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    9. [9]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    10. [10]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    11. [11]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    12. [12]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    13. [13]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    14. [14]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    15. [15]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    16. [16]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    17. [17]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

    18. [18]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    19. [19]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    20. [20]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

Metrics
  • PDF Downloads(5)
  • Abstract views(230)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return