Citation: Yi-Wei WU, Jia-Jun YAN, Mei-Hua ZHU, Hong-Xu GUO, Shao-Ming YING. Facile Synthesis and Properties of UiO-66 Electrode Material for Supercapacitors[J]. Chinese Journal of Structural Chemistry, ;2020, 39(5): 884-888. doi: 10.14102/j.cnki.0254–5861.2011–2516 shu

Facile Synthesis and Properties of UiO-66 Electrode Material for Supercapacitors

  • Corresponding author: Hong-Xu GUO, guohx@mnnu.edu.cn Shao-Ming YING, ysm@ndnu.edu.cn
  • Received Date: 1 July 2019
    Accepted Date: 25 September 2019

    Fund Project: the Natural Science Foundation of Fujian Province 2017J01420Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry FJKL_FBCM201902

Figures(4)

  • A block-like metal-organic framework UiO-66 was prepared by in-situ growth one-pot hydrothermal process. The as-synthesized material was characterized by Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. The electrochemical properties used as a supercapacitor electrode material were evaluated by cyclic voltammetry (CV), galvanostatic charge-discharge measurement (GCD) and electrochemical impedance spectroscopy (EIS) in 2 M KOH solution, exhibiting a high specific capacitance (311 F·g-1 at 1 A·g-1), suggesting its promising potential as a supercapacitor electrode material.
  • 加载中
    1. [1]

      Ke, F. S.; Wu, Y. S.; Deng, H. Metal-organic frameworks for lithium ion batteries and supercapacitors. J. Solid State Chem. 2015, 223, 109–121.  doi: 10.1016/j.jssc.2014.07.008

    2. [2]

      Du, W.; Bai, Y. L.; Xu, J.; Zhao, H.; Zhang, L.; Li, X.; Zhang, J. Advanced metal-organic frameworks (MOFs) and their derived electrode materials for supercapacitors. J. Power Sources 2018, 402, 281–295.  doi: 10.1016/j.jpowsour.2018.09.023

    3. [3]

      Xu, Y.; Li, Q.; Xue, H.; Pang, H. Metal-organic frameworks for direct electrochemical applications. Coord. Chem. Rev. 2018, 376, 292–318.  doi: 10.1016/j.ccr.2018.08.010

    4. [4]

      Sundriyal, S.; Kaur, H.; Bhardwaj, S. K.; Mishra, S.; Kim, K. H.; Deep, A. Metal-organic frameworks and their composites as efficient electrodes for supercapacitor applications. Coord. Chem. Rev. 2018, 369, 15–38.  doi: 10.1016/j.ccr.2018.04.018

    5. [5]

      Guo, H. X.; Lin, F.; Chen, J. H.; Li, F.; Weng, W. Metal-organic framework MIL-125 (Ti) for efficient adsorptive removal of rhodamine B from aqueous solution. Appl. Organomet. Chem. 2015, 29, 12–19.  doi: 10.1002/aoc.3237

    6. [6]

      Zhu, M. H.; Wu, X. M.; Niu, B. T.; Guo, H. X.; Zhang, Y. Fluorescence sensing of 2, 4, 6-trinitrophenol based on hierarchical IRMOF-3 nanosheets fabricated through a simple one-pot reaction. Appl. Organome. Chem. 2018, 32, e4333.  doi: 10.1002/aoc.4333

    7. [7]

      Wu, Y. W.; Wu, X. M.; Niu, B. T.; Zeng, Y. P.; Zhu, M. H.; Guo, H. X. Facile fabrication of Ag2(bdc)@Ag nano-composites with strong green emission and their response to sulfide anion in aqueous medium. Sens. Actuators B 2018, 255, 3163–3169.  doi: 10.1016/j.snb.2017.09.141

    8. [8]

      Wang, D. F.; Ke, Y. C.; Guo, D.; Guo, H. C.; Chen, J. H.; Weng, W. Facile fabrication of cauliflower-like MIL-100 (Cr) and its simultaneous determination of Cd2+, Pb2+, Cu2+ and Hg2+ from aqueous solution. Sens. Actuators B 2015, 216, 504–510.  doi: 10.1016/j.snb.2015.04.054

    9. [9]

      Guo, H. X.; Guo, D.; Zheng, Z. S.; Weng, W.; Chen, J. H. Visible-light photocatalytic activity of Ag@MIL-125 (Ti) microspheres. Appl. Organomet. Chem. 2015, 29, 618–623.  doi: 10.1002/aoc.3341

    10. [10]

      Zhu, M. H.; Wu, Y. W.; Guo, H. X. Hydrothermal synthesis of polyoxovanadate-based MOFs microsphere as supercapacitor. Chin. J. Struct. Chem. 2019, 38, 581–586.

    11. [11]

      Zhou, Y. J.; Mao, Z. M.; Wang, W.; Yang, Z. K.; Liu, X. In-situ fabrication of graphene oxide hybrid Ni-based metal-organic framework (Ni–MOFs@GO) with ultrahigh capacitance as electrochemical pseudocapacitor materials. ACS Appl. Mater. Interfaces 2016, 8, 28904–28916.  doi: 10.1021/acsami.6b10640

    12. [12]

      Díaz, R.; Orcajo, M. G.; Botas, J. A.; Calleja, G.; Palma, J. Co8-MOF-5 as electrode for supercapacitors. Mater. Lett. 2012, 68, 126–128.  doi: 10.1016/j.matlet.2011.10.046

    13. [13]

      Yang, F.; Li, W. Y.; Tang, B. H. J. Facile synthesis of amorphous UiO-66 (Zr-MOF) for supercapacitor application. J. Alloys Compd. 2018, 733, 8–14.  doi: 10.1016/j.jallcom.2017.10.129

    14. [14]

      Zou, D.; Liu, D. Understanding the modifications and applications of highly stable porous frameworks via UiO-66. Mater. Today 2019, 12, 139-165.  doi: 10.1016/j.mtchem.2018.12.004

    15. [15]

      Yang, F.; Li, W.; Tang, B. H. J. Facile synthesis of amorphous UiO-66 (Zr-MOF) for supercapacitor application. J. Alloys Compd. 2018, 733, 8–14.  doi: 10.1016/j.jallcom.2017.10.129

    16. [16]

      Guo, D.; Guo, H. X.; Ke, Y. C.; Wang, D. F.; Chen, J. H.; Wang, Q. X.; Weng, W. Facile one-step mechanochemical synthesis of [Cu(tu)]Cl·1/2H2O nanobelts for high-performance supercapacitor. RSC Adv. 2015, 5, 38527–38532.  doi: 10.1039/C5RA06225J

    17. [17]

      Wu, Y. W.; Hong, Z. Z.; Zhu, M. H.; Guo, H. X.; Ying, S. M. CoNi2S4 microspheres prepared by one-pot hydrothermal reaction as supercapacitor. Chin. J. Struct. Chem. 2019, 38, 83–88.

  • 加载中
    1. [1]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    2. [2]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    3. [3]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    4. [4]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    5. [5]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    6. [6]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    7. [7]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    8. [8]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    9. [9]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    10. [10]

      Xinyu Huai Jingxuan Liu Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158

    11. [11]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    12. [12]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    13. [13]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    14. [14]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    15. [15]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    16. [16]

      Yan-Li LiZhi-Ming LiKai-Kai WangXiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    19. [19]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    20. [20]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

Metrics
  • PDF Downloads(1)
  • Abstract views(183)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return