Quantum Chemical Studies of Host-guest Nanostructures of PAMAM Dendrimers in Drug Deliver
- Corresponding author: Ali MORSALI, almorsali@yahoo.com; morsali@mshdiau.ac.iraa
Citation: Fatemeh HAGHIGHI, Ali MORSALI, Mohammad Reza BOZORGMEHR, S. Ali BEYRAMABADI. Quantum Chemical Studies of Host-guest Nanostructures of PAMAM Dendrimers in Drug Deliver[J]. Chinese Journal of Structural Chemistry, ;2020, 39(5): 838-848. doi: 10.14102/j.cnki.0254–5861.2011–2510
Chauhan, A. S. Dendrimers for drug delivery. Molecules 2018, 23, 938–947.
doi: 10.3390/molecules23040938
Marasini, N.; Haque, S.; Kaminskas, L. M. Polymer-drug conjugates as inhalable drug delivery systems: a review. Curr. Opin. Colloid Interface Sci. 2017, 31, 18−29.
doi: 10.1016/j.cocis.2017.06.003
Pattni, B. S.; Chupin, V. V.; Torchilin, V. P. New developments in liposomal drug delivery. Chem. Rev. 2015, 115, 10938−10966.
doi: 10.1021/acs.chemrev.5b00046
Raza, K.; Thotakura, N.; Kumar, P.; Joshi, M.; Bhushan, S.; Bhatia, A.; Kumar, V.; Malik, R.; Sharma, G.; Guru, S. K. C60-fullerenes for delivery of docetaxel to breast cancer cells: a promising approach for enhanced efficacy and better pharmacokinetic profile. Int. J. Pharm. 2015, 495, 551−559.
doi: 10.1016/j.ijpharm.2015.09.016
Meysam, N. Antioxidant activity of sesamol derivatives and their drug delivery via C60 nanocage: a theoretical study. Chin. J. Struct. Chem. 2019, 38, 195−200.
Spencer, D. S.; Puranik, A. S.; Peppas, N. A. Intelligent nanoparticles for advanced drug delivery in cancer treatment. Curr. Opin. Chem. Eng. 2015, 7, 84−92.
doi: 10.1016/j.coche.2014.12.003
Khorram, R.; Morsali, A.; Raissi, H.; Hakimi, M.; Beyramabadi, S. A. Mechanistic, energetic and structural aspects of the adsorption of carmustine on the functionalized carbon nanotubes. Chin. J. Struc. Chem. 2017, 36, 1639−1646.
Kamel, M.; Raissi, H.; Morsali, A.; Shahabi, M. Assessment of the adsorption mechanism of flutamide anticancer drug on the functionalized single-walled carbon nanotube surface as a drug delivery vehicle: an alternative theoretical approach based on DFT and MD. Appl. Surf. Sci. 2018, 434, 492−503.
doi: 10.1016/j.apsusc.2017.10.165
Lotfi, M.; Morsali, A.; Bozorgmehr, M. R. Comprehensive quantum chemical insight into the mechanistic understanding of the surface functionalization of carbon nanotube as a nanocarrier with cladribine anticancer drug. Appl. Surf. Sci. 2018, 462, 720−729.
doi: 10.1016/j.apsusc.2018.08.151
Hamedani, S.; Moradi, S.; Aghaie, H. Adsorption of folic acid on the single-walled carbon nanotubes: AIM and NBO analyses via DFT. Chin. J. Struc. Chem. 2015, 34, 1161−1169.
Jansen, J. F.; Meijer, E.; de Brabander-van den Berg, E. M. The dendritic box: shape-selective liberation of encapsulated guests. J. Am. Chem. Soc. 1995, 117, 4417−4418.
doi: 10.1021/ja00120a032
Zimmerman, S. C.; Zeng, F.; Reichert, D. E.; Kolotuchin, S. V. Self-assembling dendrimers. Science 1996, 271, 1095−1098.
doi: 10.1126/science.271.5252.1095
Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. A new class of polymers: starburst-dendritic macromolecules. Polym. J. 1985, 17, 117−132.
doi: 10.1295/polymj.17.117
Tomalia, D. A.; Naylor, A. M.; Goddard Ⅲ, W. A. Starburst dendrimers: molecular‐level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew. Chem. Int. Ed. Engl. 1990, 29, 138−175.
doi: 10.1002/anie.199001381
Huang, D.; Wu, D. Biodegradable dendrimers for drug delivery. Mater. Sci. Eng.: C 2018, 90, 713−727.
Svenson, S.; Tomalia, D. A. Dendrimers in biomedical applications-reflections on the field. Adv. Drug Deliv. Rev. 2012, 64, 102−115.
doi: 10.1016/j.addr.2012.09.030
Frechet, J. M. Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. Science 1994, 263, 1710−1715.
doi: 10.1126/science.8134834
Hawker, C. J.; Frechet, J. M. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic acromolecules. J. Am. Chem. Soc. 1990, 112, 7638−7647.
doi: 10.1021/ja00177a027
Miller, T. M.; Neenan, T. X. Convergent synthesis of monodisperse dendrimers based upon 1, 3, 5-trisubstituted benzenes. Chem. Mater. 1990, 2, 346−349.
doi: 10.1021/cm00010a006
Chen, C. Z.; Cooper, S. L. Interactions between dendrimer biocides and bacterial membranes. Biomaterials 2002, 23, 3359−3368.
doi: 10.1016/S0142-9612(02)00036-4
Kukowska-Latallo, J. F.; Bielinska, A. U.; Johnson, J.; Spindler, R.; Tomalia, D. A.; Baker, J. R. Efficient transfer of genetic material into mammalian cells using starburst polyamidoamine dendrimers. Proc. Natl. Acad. Sci. 1996, 93, 4897−4902.
doi: 10.1073/pnas.93.10.4897
Kaanumalle, L. S.; Nithyanandhan, J.; Pattabiraman, M.; Jayaraman, N.; Ramamurthy, V. Water-soluble dendrimers as photochemical reaction media: chemical behavior of singlet and triplet radical pairs inside dendritic reaction cavities. J. Am. Chem. Soc. 2004, 126, 8999−9006.
doi: 10.1021/ja049492w
Tomalia, D.; Reyna, L.; Svenson, S. Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem. Soc. Trans. 2007, 35, 61−67.
doi: 10.1042/BST0350061
Kirkpatrick, G. J.; Plumb, J. A.; Sutcliffe, O. B.; Flint, D. J.; Wheate, N. J. Evaluation of anionic half generation 3.5~6.5 poly(amidoamine) dendrimers as delivery vehicles for the active component of the anticancer drug cisplatin. J. Inorg. Biochem. 2011, 105, 1115−1122.
doi: 10.1016/j.jinorgbio.2011.05.017
Lim, J.; Simanek, E. E. Triazine dendrimers as drug delivery systems: from synthesis to therapy. Adv. Drug Deliv. Rev. 2012, 64, 826−835.
doi: 10.1016/j.addr.2012.03.008
Neerman, M. F.; Chen, H. T.; Parrish, A. R.; Simanek, E. E. Reduction of drug toxicity using dendrimers based on melamine. Mol. Pharm. 2004, 1, 390−393.
doi: 10.1021/mp049957p
Du, L.; Jin, Y.; Yang, J.; Wang, S.; Wang, X. A functionalized poly(amidoamine)nanocarrier-loading 5-fluorouracil: pH-responsive drug release and enhanced anticancer effect. Anti-cancer Drugs 2013, 24, 172−180.
doi: 10.1097/CAD.0b013e32835920fa
Malik, N.; Evagorou, E. G.; Duncan, R. Dendrimer-platinate: a novel approach to cancer chemotherapy. Anti-cancer Drugs 1999, 10, 767−776.
doi: 10.1097/00001813-199909000-00010
Yellepeddi, V. K.; Kumar, A.; Maher, D. M.; Chauhan, S. C.; Vangara, K. K.; Palakurthi, S. Biotinylated PAMAM dendrimers for intracellular delivery of cisplatin to ovarian cancer: role of SMVT. Anticancer Res. 2011, 31, 897−906.
Zhu, S.; Hong, M.; Zhang, L.; Tang, G.; Jiang, Y.; Pei, Y. PEGylated PAMAM dendrimer-doxorubicin conjugates: in vitro evaluation and in vivo tumor accumulation. Pharm. Res. 2010, 27, 161−174.
doi: 10.1007/s11095-009-9992-1
Kono, K.; Kojima, C.; Hayashi, N.; Nishisaka, E.; Kiura, K.; Watarai, S.; Harada, A. Preparation and cytotoxic activity of poly(ethylene glycol)-modified poly(amidoamine)dendrimers bearing adriamycin. Biomaterials 2008, 29, 1664−1675.
doi: 10.1016/j.biomaterials.2007.12.017
Muniswamy, V. J.; Raval, N.; Gondaliya, P.; Tambe, V.; Kalia, K.; Tekade, R. K. 'Dendrimer-cationized-albumin'encrusted polymeric nanoparticle improves BBB penetration and anticancer activity of doxorubicin. Int. J. Pharm. 2019, 555, 77−99.
doi: 10.1016/j.ijpharm.2018.11.035
Gajbhiye, V.; Kumar, P. V.; Tekade, R. K.; Jain, N. PEGylated PPI dendritic architectures for sustained delivery of H2 receptor antagonist. Eur. J. Med. Chem. 2009, 44, 1155−1166.
doi: 10.1016/j.ejmech.2008.06.012
Majoros, I. J.; Thomas, T. P.; Mehta, C. B.; Baker, J. R. Poly(amidoamine)dendrimer-based multifunctional engineered nanodevice for cancer therapy. J. Med. Chem. 2005, 48, 5892−5899.
doi: 10.1021/jm0401863
Devarakonda, B.; Hill, R. A.; de Villiers, M. M. The effect of PAMAM dendrimer generation size and surface functional group on the aqueous solubility of nifedipine. Int. J. Pharm. 2004, 284, 133−140.
doi: 10.1016/j.ijpharm.2004.07.006
Lim, J.; Lo, S. T.; Hill, S.; Pavan, G. M.; Sun, X.; Simanek, E. E. Antitumor activity and molecular dynamics simulations of paclitaxel-laden triazine dendrimers. Mol. Pharm. 2012, 9, 404−412.
doi: 10.1021/mp2005017
Xie, Y.; Yao, Y. Incorporation with dendrimer-like biopolymer leads to improved soluble amount and in vitro anticancer efficacy of paclitaxel. J. Pharm. Sci. 2019, 108, 1984−1990.
doi: 10.1016/j.xphs.2018.12.026
Morgan, M. T.; Carnahan, M. A.; Immoos, C. E.; Ribeiro, A. A.; Finkelstein, S.; Lee, S. J.; Grinstaff, M. W. Dendritic molecular capsules for hydrophobic compounds. J. Am. Chem. Soc. 2003, 125, 15485−15489.
doi: 10.1021/ja0347383
Morgan, M. T.; Nakanishi, Y.; Kroll, D. J.; Griset, A. P.; Carnahan, M. A.; Wathier, M.; Oberlies, N. H.; Manikumar, G.; Wani, M. C.; Grinstaff, M. W. Dendrimer-encapsulated camptothecins: increased solubility, cellular uptake, and cellular retention affords enhanced anticancer activity in vitro. Cancer res. 2006, 66, 11913−11921.
doi: 10.1158/0008-5472.CAN-06-2066
Wang, F.; Bronich, T. K.; Kabanov, A. V.; Rauh, R. D.; Roovers, J. Synthesis and evaluation of a star amphiphilic block copolymer from poly(ε-caprolactone) and poly(ethylene glycol) as a potential drug delivery carrier. Bioconjugate Chem. 2005, 16, 397−405.
doi: 10.1021/bc049784m
Fröhlich, T.; Hahn, F.; Belmudes, L.; Leidenberger, M.; Friedrich, O.; Kappes, B.; Couté, Y.; Marschall, M.; Tsogoeva, S. B. Synthesis of artemisinin‐derived dimers, trimers and dendrimers: investigation of their antimalarial and antiviral activities including putative mechanisms of action. Chem. Eur. J. 2018, 24, 8103−8113.
doi: 10.1002/chem.201800729
Pedro-Hernández, L. D.; Martínez-Klimova, E.; Martínez-Klimov, M. E.; Cortez-Maya, S.; Vargas-Medina, A. C.; Ramírez-Ápan, T.; Hernández-Ortega, S.; Martínez-García, M. Anticancer activity of resorcinarene-PAMAM-dendrimer conjugates of flutamide. Anticancer Agents Med. Chem. 2018, 18, 993−1000.
doi: 10.2174/1871520618666171219114532
Scutaru, A. M.; Wenzel, M.; Scheffler, H.; Wolber, G.; Gust, R. Optimization of the N-lost drugs melphalan and bendamustine: synthesis and cytotoxicity of a new set of dendrimer-drug conjugates as tumor therapeutic agents. Bioconjugate Chem. 2010, 21, 1728−1743.
doi: 10.1021/bc900453f
Soni, N.; Jain, K.; Gupta, U.; Jain, N. Controlled delivery of gemcitabine hydrochloride using mannosylated poly(propyleneimine) dendrimers. J. Nanopart. Res. 2015, 17, 458−465.
doi: 10.1007/s11051-015-3265-1
Nabavizadeh, F.; Fanaei, H.; Imani, A.; Vahedian, J.; Amoli, F. A.; Ghorbi, J.; Sohanaki, H.; Mohammadi, S. M.; Golchoobian, R. Evaluation of nanocarrier targeted drug delivery of capecitabine-pamam dendrimer complex in a mice colorectal cancer model. Acta Med. Iran. 2016, 54, 485−493.
Neerman, M. F. The efficiency of a PAMAM dendrimer toward the encapsulation of the antileukemic drug 6-mercaptopurine. Anti-cancer Drugs 2007, 18, 839−842.
doi: 10.1097/CAD.0b013e32809ef9d0
Maciel, D.; Guerrero-Beltrán, C.; Ceña-Diez, R.; Tomás, H.; Muñoz-Fernández, M. Á.; Rodrigues, J. New anionic poly(alkylideneamine) dendrimers as microbicide agents against HIV-1 infection. Nanoscale 2019, 11, 9679−9690.
doi: 10.1039/C9NR00303G
Reguera, R.; Rodrigues, J.; Correa, J.; Munoz-Fernandez, M. A. In Phosphorous Dendrimers in Biology and Nanomedicine. Pan Stanford: Singapore 2018, 195−226.
Guerrero-Beltran, C.; Rodriguez-Izquierdo, I.; Serramia, M. J.; Araya-Duran, I.; Márquez-Miranda, V.; Gomez, R.; de la Mata, F. J.; Leal, M.; González-Nilo, F.; Muñoz-Fernández, M. Á. Anionic carbosilane dendrimers destabilize the GP120-CD4 complex blocking HIV-1 entry and cell to cell fusion. Bioconjugate Chem. 2018, 29, 1584−1594.
doi: 10.1021/acs.bioconjchem.8b00106
Sepúlveda‐Crespo, D.; Ceña‐Díez, R.; Jiménez, J. L.; Ángeles Muñoz‐Fernández, M. Mechanistic studies of viral entry: an overview of dendrimer‐based microbicides as entry inhibitors against both HIV and HSV‐2 overlapped infections. Med. Res. Rev. 2017, 37, 149−179.
doi: 10.1002/med.21405
Aliev, G.; Ashraf, G. M.; Tarasov, V. V.; Chubarev, V. N.; Leszek, J.; Gasiorowski, K.; Makhmutovа, A.; Baeesa, S. S.; Avila-Rodriguez, M.; Ustyugov, A. A. Alzheimer's disease-future therapy based on dendrimers. Curr. Neuropharmacol. 2019, 17, 288−294.
doi: 10.2174/1570159X16666180918164623
Wasiak, T.; Marcinkowska, M.; Pieszynski, I.; Zablocka, M.; Caminade, A. M.; Majoral, J. P.; Klajnert-Maculewicz, B. Cationic phosphorus dendrimers and therapy for Alzheimer's disease. New J. Chem. 2015, 39, 4852−4859.
doi: 10.1039/C5NJ00309A
Klajnert, B.; Cangiotti, M.; Calici, S.; Majoral, J. P.; Caminade, A. M.; Cladera, J.; Bryszewska, M.; Ottaviani, M. F. EPR study of the interactions between dendrimers and peptides involved in Alzheimer's and prion diseases. Macromol. Biosci. 2007, 7, 1065−1074.
doi: 10.1002/mabi.200700049
Solassol, J. M.; Crozet, C.; Perrier, V.; Leclaire, J.; Beranger, F.; Caminade, A. M.; Meunier, B.; Dormont, D.; Majoral, J. P.; Lehmann, S. Cationic phosphorus-containing dendrimers reduce prion replication both in cell culture and in mice infected with scrapie. J. Gen. Virol. 2004, 85, 791−1799.
Yiyun, C.; Na, M.; Tongwen, X.; Rongqiang, F.; Xueyuan, W.; Xiaomin, W.; Longping, W. Transdermal delivery of nonsteroidal anti‐inflammatory drugs mediated by polyamidoamine (PAMAM) dendrimers. J. Pharm. Sci. 2007, 96, 595−602.
doi: 10.1002/jps.20745
Yiyun, C.; Tongwen, X. Dendrimers as potential drug carriers. Part Ⅰ. Solubilization of non-steroidal anti-inflammatory drugs in the presence of polyamidoamine dendrimers. Eur. J. Med. Chem. 2005, 40, 1188−1192.
doi: 10.1016/j.ejmech.2005.06.010
Bohr, A.; Tsapis, N.; Andreana, I.; Chamarat, A.; Foged, C.; Delomenie, C.; Noiray, M.; El Brahmi, N.; Majoral, J. P.; Mignani, S. Anti-inflammatory effect of anti-TNF-α siRNA cationic phosphorus dendrimer nanocomplexes administered intranasally in a murine acute lung injury model. Biomacromolecules 2017, 18, 2379−2388.
doi: 10.1021/acs.biomac.7b00572
Castonguay, A.; Ladd, E.; van de Ven, T. G.; Kakkar, A. Dendrimers as bactericides. New J. Chem. 2012, 36, 199−204.
doi: 10.1039/C1NJ20481E
Ladd, E.; Sheikhi, A.; Li, N.; van de Ven, T.; Kakkar, A. Design and synthesis of dendrimers with facile surface group functionalization, and an evaluation of their bactericidal efficacy. Molecules 2017, 22, 868−876.
doi: 10.3390/molecules22060868
Heredero-Bermejo, I.; Hernández-Ros, J. M.; Sánchez-García, L.; Maly, M.; Verdú-Expósito, C.; Soliveri, J.; de la Mata, F. J.; Copa-Patiño, J. L.; Pérez-Serrano, J.; Sánchez-Nieves, J. Ammonium and guanidine carbosilane dendrimers and dendrons as microbicides. Eur. Polym. J. 2018, 101, 159−168.
doi: 10.1016/j.eurpolymj.2018.02.025
Tomalia, D. A. In quest of a systematic framework for unifying and defining nanoscience. J. Nanopart. Res. 2009, 11, 1251−1310.
doi: 10.1007/s11051-009-9632-z
Tomalia, D. A. Dendrimer research. Science 1991, 252, 1231−1231.
doi: 10.1126/science.252.5010.1231.c
Saikia, N.; Deka, R. C. Adsorption of isoniazid and pyrazinamide drug molecules onto nitrogen-doped single-wall carbon nanotubes: an ab initio study. Struct. Chem. 2014, 25, 593−605.
doi: 10.1007/s11224-013-0327-9
Chegini, H.; Morsali, A.; Bozorgmehr, M.; Beyramabadi, S. Theoretical study on the mechanism of covalent bonding of dapsone onto functionalised carbon nanotubes: effects of coupling agent. Prog. React. Kinet. Mech. 2016, 41, 345−355.
doi: 10.3184/146867816X14716178637309
Xu, H.; Li, L.; Fan, G.; Chu, X. DFT study of nanotubes as the drug delivery vehicles of Efavirenz. Comput. Theor. Chem. 2018, 1131, 57−68.
doi: 10.1016/j.comptc.2018.03.032
Etebari, N.; Morsali, A.; Beyramabadi, S. A. Structural and mechanistic studies of γ-Fe2O3 nanoparticle as capecitabine drug nanocarrier. Chin. J. Struct. Chem. 2018, 37, 375−382.
Kamel, M.; Raissi, H.; Morsali, A. Theoretical study of solvent and co-solvent effects on the interaction of flutamide anticancer drug with carbon nanotube as a drug delivery system. J. Mol. Liq. 2017, 248, 490−500.
doi: 10.1016/j.molliq.2017.10.078
Khoshbayan, B.; Morsali, A.; Bozorgmehr, M. R. Structural and electronic properties of cyclic peptide-gold nanoparticle as a drug delivery system. Chin. J. Struc. Chem. 2019, 38, 566−580.
Shahabi, D.; Tavakol, H. DFT, NBO and molecular docking studies of the adsorption of fluoxetine into and on the surface of simple and sulfur-doped carbon nanotubes. Appl. Surf. Sci. 2017, 420, 267−275.
doi: 10.1016/j.apsusc.2017.05.068
Naderi, S.; Morsali, A.; Bozorgmehr, M. R.; Beyramabadi, S. A. Mechanistic, energetic and structural studies of carbon nanotubes functionalised with dihydroartemisinin drug in gas and solution phases. Phys. Chem. Liq. 2018, 56, 610−618.
doi: 10.1080/00319104.2017.1367790
Ketabi, S.; Rahmani, L. Carbon nanotube as a carrier in drug delivery system for carnosine dipeptide: a computer simulation study. Mater. Sci. Eng.: C 2017, 73, 173−181.
Wadhwa, S.; Mumper, R. J. D-penicillamine and other low molecular weight thiols: review of anticancer effects and related mechanisms. Cancer Lett. 2013, 337, 8−21.
doi: 10.1016/j.canlet.2013.05.027
Peisach, J.; Blumberg, W. A mechanism for the action of penicillamine in the treatment of Wilson's disease. Mol. Pharmacol. 1969, 5, 200−209.
Walshe, J. Penicillamine: the treatment of first choice for patients with Wilson's disease. Mov. Disord. 1999, 14, 545−550.
doi: 10.1002/1531-8257(199907)14:4<545::AID-MDS1001>3.0.CO;2-U
Metushi, I. G.; Zhu, X.; Uetrecht, J. D-penicillamine-induced granulomatous hepatitis in brown Norway rats. Mol. Cell. Biochem. 2014, 393, 229−235.
doi: 10.1007/s11010-014-2065-8
Camp, A. Penicillamine in the treatment of rheumatoid arthritis. J. Rheumatol. Suppl. 1980, 7, 103−106.
Chandra, A.; Demirhan, I.; Arya, S.; Chandra, P. D‐Penicillamine inhibits transactivation of human immunodeficiency virus type‐1 (HIV‐1) LTR by transactivator protein. FEBS Lett. 1988, 236, 282−286.
doi: 10.1016/0014-5793(88)80038-3
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 09, Revision B. 01, Gaussian, Inc., Wallingford CT 2016.
Tomasi, J.; Persico, M. Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem. Rev. 1994, 94, 2027−2094.
doi: 10.1021/cr00031a013
Coitiño, E. L.; Tomasi, J.; Cammi, R. On the evaluation of the solvent polarization apparent charges in the polarizable continuum model: a new formulation. J. Comput. Chem. 1995, 16, 20−30.
doi: 10.1002/jcc.540160103
Parr, R. G.; Szentpaly, L. V.; Liu, S. Electrophilicity index. J. Am. Chem. Soc. 1999, 121, 1922−1924.
doi: 10.1021/ja983494x
Keith, T. A. AIMAll (Version 13.05. 06). TK Gristmill Software, Overland Park KS, USA 2013.
Bader, R. F. A quantum theory of molecular structure and its applications. Chem. Rev. 1991, 91, 893−928.
doi: 10.1021/cr00005a013
Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215−241.
doi: 10.1007/s00214-007-0310-x
Rozas, I.; Alkorta, I.; Elguero, J. Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. J. Am. Chem. Soc. 2000, 122, 11154−11161.
doi: 10.1021/ja0017864
Espinosa, E.; Souhassou, M.; Lachekar, H.; Lecomte, C. Topological analysis of the electron density in hydrogen bonds. Acta Crystallogr. Sect. B: Struct. Sci. 1999, 55, 563−572.
doi: 10.1107/S0108768199002128
Tsegaye Tadesse Tsega , Jiantao Zai , Chin Wei Lai , Xin-Hao Li , Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
Chaozheng He , Jia Wang , Ling Fu , Wei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037
Run-Han Li , Tian-Yi Dang , Wei Guan , Jiang Liu , Ya-Qian Lan , Zhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805
Ting-Ting Huang , Jin-Fa Chen , Juan Liu , Tai-Bao Wei , Hong Yao , Bingbing Shi , Qi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281
Dan-Ying Xing , Xiao-Dan Zhao , Chuan-Shu He , Bo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436
Songtao Cai , Liuying Wu , Yuan Li , Soham Samanta , Jinying Wang , Bing Liu , Feihu Wu , Kaitao Lai , Yingchao Liu , Junle Qu , Zhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599
Keyang Li , Yanan Wang , Yatao Xu , Guohua Shi , Sixian Wei , Xue Zhang , Baomei Zhang , Qiang Jia , Huanhua Xu , Liangmin Yu , Jun Wu , Zhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
Tao Ban , Xi-Yang Yu , Hai-Kuo Tian , Zheng-Qing Huang , Chun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549
Huijiao Fu , Peiqin Liang , Qianwen Chen , Yan Wang , Guang Li , Xuzi Cai , Shengtao Wang , Kun Chen , Shengying Shi , Zhiqiang Yu , Xuefeng Wang . COX-2 blocking therapy in cisplatin chemosensitization of ovarian cancer: An allicin-based nanomedicine approach. Chinese Chemical Letters, 2024, 35(8): 109241-. doi: 10.1016/j.cclet.2023.109241
An Lu , Yuhao Guo , Yi Yan , Lin Zhai , Xiangyu Wang , Weiran Cao , Zijie Li , Zhixia Zhao , Yujie Shi , Yuanjun Zhu , Xiaoyan Liu , Huining He , Zhiyu Wang , Jian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928
Yuanyi Zhou , Ke Ma , Jinfeng Liu , Zirun Zheng , Bo Hu , Yu Meng , Zhizhong Li , Mingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056
Yating Zheng , Yulan Huang , Jing Luo , Xuqi Peng , Xiran Gui , Gang Liu , Yang Zhang . Supercritical fluid technology: A game-changer for biomacromolecular nanomedicine preparation and biomedical application. Chinese Chemical Letters, 2024, 35(7): 109169-. doi: 10.1016/j.cclet.2023.109169
Jiaqi Huang , Renjiang Kong , Yanmei Li , Ni Yan , Yeyang Wu , Ziwen Qiu , Zhenming Lu , Xiaona Rao , Shiying Li , Hong Cheng . Feedback enhanced tumor targeting delivery of albumin-based nanomedicine to amplify photodynamic therapy by regulating AMPK signaling and inhibiting GSTs. Chinese Chemical Letters, 2024, 35(8): 109254-. doi: 10.1016/j.cclet.2023.109254
Zongyi Huang , Cheng Guo , Quanxing Zheng , Hongliang Lu , Pengfei Ma , Zhengzhong Fang , Pengfei Sun , Xiaodong Yi , Zhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580
Xingyan Liu , Chaogang Jia , Guangmei Jiang , Chenghua Zhang , Mingzuo Chen , Xiaofei Zhao , Xiaocheng Zhang , Min Fu , Siqi Li , Jie Wu , Yiming Jia , Youzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455
Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254
Xu-Hui Yue , Xiang-Wen Zhang , Hui-Min He , Lei Qiao , Zhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907
Haojie Song , Laiyu Luo , Siyu Wang , Guo Zhang , Baojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347