Citation: Xiao-Zhen GAO, Yu PANG, Jing YANG, Xiao-Chun YANG, Yu-Long SHEN, Jing-Xian JIA, Xiang-Jun MENG. DFT Study of VOC Pollutants Catalyzed by Optimal MoxOy: Exploration of Reaction Mechanism of CH3COOH + MoO2[J]. Chinese Journal of Structural Chemistry, ;2020, 39(5): 861-872. doi: 10.14102/j.cnki.0254–5861.2011–2485 shu

DFT Study of VOC Pollutants Catalyzed by Optimal MoxOy: Exploration of Reaction Mechanism of CH3COOH + MoO2

  • Corresponding author: Jing YANG, yjlzddove@gmail.com Yu-Long SHEN, 
  • Received Date: 3 June 2019
    Accepted Date: 16 February 2020

    Fund Project: the Shanxi Provincial Education Department 2019L0986the 2016 annual major science and technology projects of Shanxi Province MC2016-02/5the school fund of Shanxi Institute of Technology 2016050001the school fund of Shanxi Institute of Technology 20180010012the school fund of Shanxi Institute of Technology 20190040013the major project of Tangshan Normal College 2017B01the major project of Tangshan Normal College 2017B02

Figures(8)

  • We propose the complicated catalytic mechanisms for the acetic acid molecule catalyzed by transition metal oxide MoO2 based on density functional theory calculations. The geometries and energetic values of all stationaries and transition states involved in the three different reaction pathways (Channels I, Ⅱ and Ⅲ) are reported and analyzed. All reaction mechanisms are fully different from that of MoxOy catalyzing volatile organic compounds (VOCs) in previous studies. The completely new mechanisms catalyzed by MoO2 for acetic acid have been discovered for the first time. Channels I (IA and IB) and Ⅱ are both addition reactions and channel Ⅲ is hydrogen abstraction reaction by producing a leaving group. The barrier energies of reaction are also compared with other catalytic reactions, showing that MoO2 catalyst expresses a lower barrier energy (8.22 kcal/mol) by addition reaction, which represents MoO2 tends to absorb acetic acid pollution gas via addition reaction rather than release toxic substances. This also means that MoO2 is a more effective and representative catalyst and is suitable for further study of catalytic carboxylic acids, so the reaction mechanisms may provide a useful theoretical guidance and solution for the catalysis of carboxylic acids.
  • 加载中
    1. [1]

      Xiao, S. J.; Zhao, X. J.; Chu, Z. J.; Xu, H.; Liu, G. Q.; Huang, C. Z.; Zhang, L. New off-on sensor for captopril sensing based on photoluminescent MoOx quantum dots. ACS Omega. 2017, 2, 1666–1671.  doi: 10.1021/acsomega.7b00088

    2. [2]

      Wang, Y.; Zhang, X.; Luo, Z.; Huang, X.; Tan, C.; Li, H.; Zheng, B.; Li, B.; Huang, Y.; Yang, J.; Zong, Y.; Ying, Y.; Zhang, H. Liquidphase growth of platinum nanoparticles on molybdenum trioxide nanosheets: an enhanced catalyst with intrinsic peroxidase-like catalytic activity. Nanoscale 2014, 6, 12340–12344.  doi: 10.1039/C4NR04115A

    3. [3]

      Prasomsri, T.; Nimmanwudipong, T.; Román-Leshkov, Y. Effective hydrodeoxygenation of biomass-derived oxygenates into unsaturated hydrocarbons by MoO3 using low H2 pressures. Energy Environ. Sci. 2013, 6, 1732–1738.  doi: 10.1039/c3ee24360e

    4. [4]

      Huang, Y.; Hu, Y. L.; Ye, F. H.; Fang, Y. M. Lignin pyrolysis and in situ hydrodeoxygenation over MoO3: interaction between MoO3 and lignin. Energy Fuels. 2017, 31, 8356–8362.  doi: 10.1021/acs.energyfuels.7b01490

    5. [5]

      Wyrwas, R. B.; Robertson, E. M.; Jarrold, C. C. Reactions between CO and small molybdenum suboxide cluster anions. J. Chem. Phys. 2007, 126, 214309–8.  doi: 10.1063/1.2737447

    6. [6]

      Wyrwas, R. B.; Jarrold, C. C. Production of C6O6 from oligomerization of CO on molybdenum anions. J. Am. Chem. Soc. 2006, 128, 13688–13689.  doi: 10.1021/ja0643927

    7. [7]

      Hossain, E.; Rothgeb, D. W.; Jarrold, C. C. CO2 reduction by group 6 transition metal suboxide cluster anions. J. Chem. Phys. 2010, 133, 024305–10.  doi: 10.1063/1.3455220

    8. [8]

      Ray, M.; Waller, S. E.; Jarrold, C. C. Effect of alkyl group on MxOy + ROH (M = Mo, W; R = Me, Et) reaction rates. J. Phys. Chem. A 2016, 120, 1508–1519.  doi: 10.1021/acs.jpca.6b00102

    9. [9]

      Ramabhadran, R. O.; Mann, J. E.; Waller, S. E.; Rothgeb, D. W.; Jarrold, C. C.; Raghavachari, K. New insights on photocatalytic H2 liberation from water using transition-metal oxides: lessons from cluster models of molybdenum and tungsten oxides. J. Am. Chem. Soc. 2013, 135, 17039–17051.  doi: 10.1021/ja4076309

    10. [10]

      Mayhall, N. J.; Rothgeb, D. W.; Hossain, E.; Jarrold, C. C.; Raghavachari, K. Water reactivity with tungsten oxides: H2 production and kinetic traps. J. Chem. Phys. 2009, 131, 144302–8.  doi: 10.1063/1.3242294

    11. [11]

      Chary, K. V. R.; Bhaskar, T.; Kishan, G.; Reddy, K. R. Characterization and reactivity of molybdenum oxide catalysts supported on niobia. J. Phys. Chem. B 2001, 105, 4392–4399.  doi: 10.1021/jp003201y

    12. [12]

      Li, Z. J.; Fang, Z. T.; Kelley, M. S.; Kay, B. D.; Rousseau, R.; Dohnalek, Z.; Dixon, D. A. Ethanol conversion on cyclic (MO3)3 (M = Mo, W) clusters. J. Phys. Chem. C 2014, 118, 4869–4877.  doi: 10.1021/jp500255f

    13. [13]

      Guan, J. X.; Liang, Y.; Yang, J.; Yang, X. C.; Jia, J. X. Density functional theory studies on the mechanism of activation formic acid catalyzed by transition metal oxide MoO. Chin. J. Struct. Chem. 2018, 37, 1175–1185.

    14. [14]

      Rosado-Reyes, C. M.; Francisco, J. S. Atmospheric oxidation pathways of acetic acid. J. Phys. Chem. A 2006, 110, 4419–4433.  doi: 10.1021/jp0567974

    15. [15]

      Kawamura, K.; Ng, L. L.; Kaplan, I. R. Determination of organic acids (C1–C10) in the atmosphere, motor exhausts, and engine oils Environ. Sci. Technol. 1985, 19, 1082–1086.

    16. [16]

      Imamura, S. I.; Hlrano, A.; Kawabata, N. Wet oxidation of acetic acid catalyzed by Co–Bi complex oxides. Ind. Enp. Chem. Prd. Res. Dev. 1982, 21, 570–575.  doi: 10.1021/i300008a011

    17. [17]

      Gao, X. Z.; Liang, Y.; Meng, X. J.; Yang, X. C.; Jia, J. X.; Xu, W. G. DFT study of oxygenated organic pollutants catalyzed by molybdenum oxides: comparison of reaction mechanisms of MoOx + HCHO (x = 1, 2, 3). Chin. J. Struct. Chem. 2019, 38, 1229–1240.

    18. [18]

      Pacchioni, G. Oxygen vacancy: the invisible agent on oxide surfaces. ChemPhysChem. 2003, 4, 1041–1047.  doi: 10.1002/cphc.200300835

    19. [19]

      Barckholtz, T. A.; Bursten, B. E. On the possible structures of Mn2(CO)8:  theoretical support for an unprecedented asymmetric unbridged isomer. J. Am. Chem. Soc. 1998, 120, 1926–1927.  doi: 10.1021/ja973629j

    20. [20]

      Niu, S. X.; Hall, M. B. Theoretical studies on reactions of transition-metal complexes. Chem. Rev. 2000, 100, 353–406.  doi: 10.1021/cr980404y

    21. [21]

      Ding, K. N.; Xia, X. Z.; Lv, X.; Li, J. J. DFT investigation of the adsorption/dissociation mechanisms of methyl nitrite on the Pd(111) surface. Chin. J. Struct. Chem. 2013, 32, 936–948.

    22. [22]

      Carreón-Macedo, J. L.; Harvey, J. N. Computational study of the energetics of 3Fe(CO)4, 1Fe(CO)4 and 1Fe(CO)4(L), L = Xe, CH4, H2 and CO. Phys. Chem. Chem. Phys. 2006, 8, 93–100.  doi: 10.1039/B513325D

    23. [23]

      Bühl, M.; Kabrede, H. Geometries of transition-metal complexes from density-functional theory. J. Chem. Theory Comput. 2006, 2, 1282–1290.  doi: 10.1021/ct6001187

    24. [24]

      Ziegler, T.; Autschbach, J. Theoretical methods of potential use for studies of inorganic reaction mechanisms. Chem. Rev. 2005, 105, 2695–2722.  doi: 10.1021/cr0307188

    25. [25]

      Straub, B. F. Pd(0) mechanism of palladium-catalyzed cyclopropanation of alkenes by CH2N2: a DFT study. J. Am. Chem. Soc. 2002, 124, 14195–14201.  doi: 10.1021/ja027762+

    26. [26]

      Frenking, G.; Frohlich, N. The nature of the bonding in transition-metal compounds. Chem. Rev. 2000, 100, 717–774.  doi: 10.1021/cr980401l

    27. [27]

      Cundari, T. R.; Deng, J.; Zhao, Y. ONIOM study of the active species in Pd-phosphine catalyzed coupling reactions. J. Mol. Struct. (Theochem. ) 2003, 632, 121–129.  doi: 10.1016/S0166-1280(03)00293-8

    28. [28]

      Deeth, R. J.; Smith, A.; Brown, J. M. Electronic control of the regiochemistry in palladium-phosphine catalysed intermolecular heck reactions. J. Am. Chem. Soc. 2004, 126, 7144–7151.  doi: 10.1021/ja0315098

    29. [29]

      Bamgbelu, A.; Wang, J.; Leszczynski, J. TDDFT study of the optical properties of Cy5 and its derivatives. J. Phys. Chem. A 2010, 114, 3551–3555.  doi: 10.1021/jp908485z

    30. [30]

      Qu, R. J.; Liu, H. X.; Feng, M. B.; Yang, X.; Wang, Z. Y. Investigation on intramolecular hydrogen bond and some thermodynamic properties of polyhydroxylated anthraquinones. Chem. Eng. Data 2012, 57, 2442–2455.  doi: 10.1021/je300407g

    31. [31]

      Shi, J. Q.; Qu, R. J.; Feng, M. B.; Wang, X. H.; Wang, L. S.; Yang, S. G.; Wang, Z. Y. Oxidative degradation of decabromodiphenyl ether (BDE 209) by potassium permanganate: reaction pathways, kinetics, and mechanisms assisted by density functional theory calculations. Environ. Sci. Technol. 2015, 49, 4209–4217.  doi: 10.1021/es505111r

    32. [32]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B. G.; Petersson, A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D. 01. Gaussian, Inc., Wallingford CT 2009.

    33. [33]

      Becke, A. D. Density-functional thermochemistry Ⅲ, the role of exact exchange. J. Phys. Chem. 1993, 98, 5648–5652  doi: 10.1063/1.464913

    34. [34]

      Lee, C.; Parr, R. G.; Yang, W. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1998, 37, 785–789.

    35. [35]

      Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270–283.  doi: 10.1063/1.448799

    36. [36]

      Wadt, W. R.; Hay, P. J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 1985, 82, 284–298.  doi: 10.1063/1.448800

    37. [37]

      Kundu, S.; Mondal, D.; Bhattacharya, K.; Endo, A.; Sanna, D.; Garribba, E.; Chaudhury, M. Nonoxido vanadium(Ⅳ) compounds involving dithiocarbazate-based tridentate ONS ligands: synthesis, electronic and molecular structure, spectroscopic and redox properties. Inorg. Chem. 2015, 54, 6203–6215.  doi: 10.1021/acs.inorgchem.5b00359

    38. [38]

      Dunning, T. H. Gaussian basis functions for use in molecular calculations. I. contraction of (9s5p)(9s5p) atomic basis sets for the first-row atoms. J. Chem. Phys. 1970, 53, 2823–2833.  doi: 10.1063/1.1674408

    39. [39]

      Huzinaga, S. J. Gaussian-type functions for polyatomic systems. J. Chem. Phys. 1965, 42, 1293–1302.  doi: 10.1063/1.1696113

    40. [40]

      Zhao, Y.; Feng, X. J.; Xie, Y. M.; Bruce, K. R.; Schaefer, H. F. Molybdenum-molybdenum multiple bonding in homoleptic molybdenum carbonyls: comparison with their chromium analogues. J. Phys. Chem. A 2012, 116, 5698–5706.  doi: 10.1021/jp302272q

    41. [41]

      Ermias, G. L.; Rao, T. L.; Tsung, F. T.; Chi, L. C.; Jyh, C. J. Oxidative decomposition of propylene carbonate in lithium ion batteries: a DFT study. J. Phys. Chem. A 2013, 117, 7959–7969.

    42. [42]

      Sandrone, G.; Dixon, D. A. A periodic density functional theory and Hartree-fock study of alkali halides with gaussian orbitals angulo. J. Phys. Chem. A 1998, 102, 10310–10317.  doi: 10.1021/jp981431v

    43. [43]

      Bottoni, A. Theoretical study of the hydrogen and chlorine abstraction from chloromethanes by silyl and trichlorosilyl radicals:   a comparison between the Hartree-fock method, perturbation theory, and density functional theory. J. Phys. Chem. A 1998, 102, 10142–10150.

    44. [44]

      Gonzalez, C.; Schlegel, H. B. Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 1990, 94, 5523–5527.  doi: 10.1021/j100377a021

    45. [45]

      Lv, L. L.; Yang, S. S.; Yuan, K. K.; Wang, X. F.; Wang, Y. C. Theoretical study on the excited-state intramolecular hydrogen abstraction reactions of butanal. Chin. J. Struct. Chem. 2009, 28, 1226–1235.

    46. [46]

      Zhang, H. J.; Chen, S. L.; Zhong, J.; Zhang, S. W.; Zhang, Y. H.; Zhang, X. H.; Li, Z. S.; Zeng, X. C. Formation of aqueous-phase sulfate during the haze period in china: kinetics and atmospheric implications. Atmos. Environ. 2018, 177, 93–99.  doi: 10.1016/j.atmosenv.2018.01.017

    47. [47]

      Mack, D. J.; Njardarson, J. T. Recent advances in the metal-catalyzed ring expansions of three- and four-membered rings. ACS Catal. 2013, 3, 272–286.  doi: 10.1021/cs300771d

    48. [48]

      Abolfazl, S.; Ehsan, Z. DFT calculations and NBO analysis of 2-chloroethylethyldichlorosilane unimolecular elimination kinetics in the gas phase. Chin. J. Struct. Chem. 2012, 31, 625–634.

    49. [49]

      De Smedt, F.; Bui, X. V.; Nguyen, T. L.; Peeters, J.; Vereecken, L. Theoretical and experimental study of the product branching in the reaction of acetic acid with OH radicals. J. Phys. Chem. A 2005, 109, 2401–2409.  doi: 10.1021/jp044679v

    50. [50]

      Yang, Y.; Xu, H. X.; Cao, D. P.; Zeng, X. C.; Cheng, D. J. Hydrogen production via efficient formic acid decomposition: engineering the surface structure of Pd-based alloy catalysts by design. ACS Catal. 2019, 9, 781–790.  doi: 10.1021/acscatal.8b03485

    51. [51]

      Koroteev, V. O.; Bulushev, D. A.; Chuvilin, A. L.; Okotrub, A. V.; Bulusheva, L. G. Nanometer-sized MoS2 clusters on graphene flakes for catalytic formic acid decomposition. ACS Catal. 2014, 4, 3950–3956.  doi: 10.1021/cs500943b

    52. [52]

      Lu, G. Q.; Crown, A.; Wieckowski, A. Formic acid decomposition on polycrystalline platinum and palladized platinum electrodes. J. Phys. Chem. B 1999, 103, 9700–9711.  doi: 10.1021/jp992297x

  • 加载中
    1. [1]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    2. [2]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    3. [3]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    4. [4]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    5. [5]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    6. [6]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    7. [7]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    8. [8]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    9. [9]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    10. [10]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    11. [11]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    12. [12]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    13. [13]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    14. [14]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    15. [15]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    16. [16]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    17. [17]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    18. [18]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    19. [19]

      Dong-Sheng DengSu-Qin TangYong-Tu YuanDing-Xiong XieZhi-Yuan ZhuYue-Mei HuangYun-Lin Liu . C-F insertion reaction sheds new light on the construction of fluorinated compounds. Chinese Chemical Letters, 2024, 35(8): 109417-. doi: 10.1016/j.cclet.2023.109417

    20. [20]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

Metrics
  • PDF Downloads(1)
  • Abstract views(176)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return