DFT Study of VOC Pollutants Catalyzed by Optimal MoxOy: Exploration of Reaction Mechanism of CH3COOH + MoO2
- Corresponding author: Jing YANG, yjlzddove@gmail.com Yu-Long SHEN,
Citation: Xiao-Zhen GAO, Yu PANG, Jing YANG, Xiao-Chun YANG, Yu-Long SHEN, Jing-Xian JIA, Xiang-Jun MENG. DFT Study of VOC Pollutants Catalyzed by Optimal MoxOy: Exploration of Reaction Mechanism of CH3COOH + MoO2[J]. Chinese Journal of Structural Chemistry, ;2020, 39(5): 861-872. doi: 10.14102/j.cnki.0254–5861.2011–2485
Xiao, S. J.; Zhao, X. J.; Chu, Z. J.; Xu, H.; Liu, G. Q.; Huang, C. Z.; Zhang, L. New off-on sensor for captopril sensing based on photoluminescent MoOx quantum dots. ACS Omega. 2017, 2, 1666–1671.
doi: 10.1021/acsomega.7b00088
Wang, Y.; Zhang, X.; Luo, Z.; Huang, X.; Tan, C.; Li, H.; Zheng, B.; Li, B.; Huang, Y.; Yang, J.; Zong, Y.; Ying, Y.; Zhang, H. Liquidphase growth of platinum nanoparticles on molybdenum trioxide nanosheets: an enhanced catalyst with intrinsic peroxidase-like catalytic activity. Nanoscale 2014, 6, 12340–12344.
doi: 10.1039/C4NR04115A
Prasomsri, T.; Nimmanwudipong, T.; Román-Leshkov, Y. Effective hydrodeoxygenation of biomass-derived oxygenates into unsaturated hydrocarbons by MoO3 using low H2 pressures. Energy Environ. Sci. 2013, 6, 1732–1738.
doi: 10.1039/c3ee24360e
Huang, Y.; Hu, Y. L.; Ye, F. H.; Fang, Y. M. Lignin pyrolysis and in situ hydrodeoxygenation over MoO3: interaction between MoO3 and lignin. Energy Fuels. 2017, 31, 8356–8362.
doi: 10.1021/acs.energyfuels.7b01490
Wyrwas, R. B.; Robertson, E. M.; Jarrold, C. C. Reactions between CO and small molybdenum suboxide cluster anions. J. Chem. Phys. 2007, 126, 214309–8.
doi: 10.1063/1.2737447
Wyrwas, R. B.; Jarrold, C. C. Production of C6O6– from oligomerization of CO on molybdenum anions. J. Am. Chem. Soc. 2006, 128, 13688–13689.
doi: 10.1021/ja0643927
Hossain, E.; Rothgeb, D. W.; Jarrold, C. C. CO2 reduction by group 6 transition metal suboxide cluster anions. J. Chem. Phys. 2010, 133, 024305–10.
doi: 10.1063/1.3455220
Ray, M.; Waller, S. E.; Jarrold, C. C. Effect of alkyl group on MxOy– + ROH (M = Mo, W; R = Me, Et) reaction rates. J. Phys. Chem. A 2016, 120, 1508–1519.
doi: 10.1021/acs.jpca.6b00102
Ramabhadran, R. O.; Mann, J. E.; Waller, S. E.; Rothgeb, D. W.; Jarrold, C. C.; Raghavachari, K. New insights on photocatalytic H2 liberation from water using transition-metal oxides: lessons from cluster models of molybdenum and tungsten oxides. J. Am. Chem. Soc. 2013, 135, 17039–17051.
doi: 10.1021/ja4076309
Mayhall, N. J.; Rothgeb, D. W.; Hossain, E.; Jarrold, C. C.; Raghavachari, K. Water reactivity with tungsten oxides: H2 production and kinetic traps. J. Chem. Phys. 2009, 131, 144302–8.
doi: 10.1063/1.3242294
Chary, K. V. R.; Bhaskar, T.; Kishan, G.; Reddy, K. R. Characterization and reactivity of molybdenum oxide catalysts supported on niobia. J. Phys. Chem. B 2001, 105, 4392–4399.
doi: 10.1021/jp003201y
Li, Z. J.; Fang, Z. T.; Kelley, M. S.; Kay, B. D.; Rousseau, R.; Dohnalek, Z.; Dixon, D. A. Ethanol conversion on cyclic (MO3)3 (M = Mo, W) clusters. J. Phys. Chem. C 2014, 118, 4869–4877.
doi: 10.1021/jp500255f
Guan, J. X.; Liang, Y.; Yang, J.; Yang, X. C.; Jia, J. X. Density functional theory studies on the mechanism of activation formic acid catalyzed by transition metal oxide MoO. Chin. J. Struct. Chem. 2018, 37, 1175–1185.
Rosado-Reyes, C. M.; Francisco, J. S. Atmospheric oxidation pathways of acetic acid. J. Phys. Chem. A 2006, 110, 4419–4433.
doi: 10.1021/jp0567974
Kawamura, K.; Ng, L. L.; Kaplan, I. R. Determination of organic acids (C1–C10) in the atmosphere, motor exhausts, and engine oils Environ. Sci. Technol. 1985, 19, 1082–1086.
Imamura, S. I.; Hlrano, A.; Kawabata, N. Wet oxidation of acetic acid catalyzed by Co–Bi complex oxides. Ind. Enp. Chem. Prd. Res. Dev. 1982, 21, 570–575.
doi: 10.1021/i300008a011
Gao, X. Z.; Liang, Y.; Meng, X. J.; Yang, X. C.; Jia, J. X.; Xu, W. G. DFT study of oxygenated organic pollutants catalyzed by molybdenum oxides: comparison of reaction mechanisms of MoOx + HCHO (x = 1, 2, 3). Chin. J. Struct. Chem. 2019, 38, 1229–1240.
Pacchioni, G. Oxygen vacancy: the invisible agent on oxide surfaces. ChemPhysChem. 2003, 4, 1041–1047.
doi: 10.1002/cphc.200300835
Barckholtz, T. A.; Bursten, B. E. On the possible structures of Mn2(CO)8: theoretical support for an unprecedented asymmetric unbridged isomer. J. Am. Chem. Soc. 1998, 120, 1926–1927.
doi: 10.1021/ja973629j
Niu, S. X.; Hall, M. B. Theoretical studies on reactions of transition-metal complexes. Chem. Rev. 2000, 100, 353–406.
doi: 10.1021/cr980404y
Ding, K. N.; Xia, X. Z.; Lv, X.; Li, J. J. DFT investigation of the adsorption/dissociation mechanisms of methyl nitrite on the Pd(111) surface. Chin. J. Struct. Chem. 2013, 32, 936–948.
Carreón-Macedo, J. L.; Harvey, J. N. Computational study of the energetics of 3Fe(CO)4, 1Fe(CO)4 and 1Fe(CO)4(L), L = Xe, CH4, H2 and CO. Phys. Chem. Chem. Phys. 2006, 8, 93–100.
doi: 10.1039/B513325D
Bühl, M.; Kabrede, H. Geometries of transition-metal complexes from density-functional theory. J. Chem. Theory Comput. 2006, 2, 1282–1290.
doi: 10.1021/ct6001187
Ziegler, T.; Autschbach, J. Theoretical methods of potential use for studies of inorganic reaction mechanisms. Chem. Rev. 2005, 105, 2695–2722.
doi: 10.1021/cr0307188
Straub, B. F. Pd(0) mechanism of palladium-catalyzed cyclopropanation of alkenes by CH2N2: a DFT study. J. Am. Chem. Soc. 2002, 124, 14195–14201.
doi: 10.1021/ja027762+
Frenking, G.; Frohlich, N. The nature of the bonding in transition-metal compounds. Chem. Rev. 2000, 100, 717–774.
doi: 10.1021/cr980401l
Cundari, T. R.; Deng, J.; Zhao, Y. ONIOM study of the active species in Pd-phosphine catalyzed coupling reactions. J. Mol. Struct. (Theochem. ) 2003, 632, 121–129.
doi: 10.1016/S0166-1280(03)00293-8
Deeth, R. J.; Smith, A.; Brown, J. M. Electronic control of the regiochemistry in palladium-phosphine catalysed intermolecular heck reactions. J. Am. Chem. Soc. 2004, 126, 7144–7151.
doi: 10.1021/ja0315098
Bamgbelu, A.; Wang, J.; Leszczynski, J. TDDFT study of the optical properties of Cy5 and its derivatives. J. Phys. Chem. A 2010, 114, 3551–3555.
doi: 10.1021/jp908485z
Qu, R. J.; Liu, H. X.; Feng, M. B.; Yang, X.; Wang, Z. Y. Investigation on intramolecular hydrogen bond and some thermodynamic properties of polyhydroxylated anthraquinones. Chem. Eng. Data 2012, 57, 2442–2455.
doi: 10.1021/je300407g
Shi, J. Q.; Qu, R. J.; Feng, M. B.; Wang, X. H.; Wang, L. S.; Yang, S. G.; Wang, Z. Y. Oxidative degradation of decabromodiphenyl ether (BDE 209) by potassium permanganate: reaction pathways, kinetics, and mechanisms assisted by density functional theory calculations. Environ. Sci. Technol. 2015, 49, 4209–4217.
doi: 10.1021/es505111r
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B. G.; Petersson, A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D. 01. Gaussian, Inc., Wallingford CT 2009.
Becke, A. D. Density-functional thermochemistry Ⅲ, the role of exact exchange. J. Phys. Chem. 1993, 98, 5648–5652
doi: 10.1063/1.464913
Lee, C.; Parr, R. G.; Yang, W. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1998, 37, 785–789.
Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270–283.
doi: 10.1063/1.448799
Wadt, W. R.; Hay, P. J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 1985, 82, 284–298.
doi: 10.1063/1.448800
Kundu, S.; Mondal, D.; Bhattacharya, K.; Endo, A.; Sanna, D.; Garribba, E.; Chaudhury, M. Nonoxido vanadium(Ⅳ) compounds involving dithiocarbazate-based tridentate ONS ligands: synthesis, electronic and molecular structure, spectroscopic and redox properties. Inorg. Chem. 2015, 54, 6203–6215.
doi: 10.1021/acs.inorgchem.5b00359
Dunning, T. H. Gaussian basis functions for use in molecular calculations. I. contraction of (9s5p)(9s5p) atomic basis sets for the first-row atoms. J. Chem. Phys. 1970, 53, 2823–2833.
doi: 10.1063/1.1674408
Huzinaga, S. J. Gaussian-type functions for polyatomic systems. J. Chem. Phys. 1965, 42, 1293–1302.
doi: 10.1063/1.1696113
Zhao, Y.; Feng, X. J.; Xie, Y. M.; Bruce, K. R.; Schaefer, H. F. Molybdenum-molybdenum multiple bonding in homoleptic molybdenum carbonyls: comparison with their chromium analogues. J. Phys. Chem. A 2012, 116, 5698–5706.
doi: 10.1021/jp302272q
Ermias, G. L.; Rao, T. L.; Tsung, F. T.; Chi, L. C.; Jyh, C. J. Oxidative decomposition of propylene carbonate in lithium ion batteries: a DFT study. J. Phys. Chem. A 2013, 117, 7959–7969.
Sandrone, G.; Dixon, D. A. A periodic density functional theory and Hartree-fock study of alkali halides with gaussian orbitals angulo. J. Phys. Chem. A 1998, 102, 10310–10317.
doi: 10.1021/jp981431v
Bottoni, A. Theoretical study of the hydrogen and chlorine abstraction from chloromethanes by silyl and trichlorosilyl radicals: a comparison between the Hartree-fock method, perturbation theory, and density functional theory. J. Phys. Chem. A 1998, 102, 10142–10150.
Gonzalez, C.; Schlegel, H. B. Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 1990, 94, 5523–5527.
doi: 10.1021/j100377a021
Lv, L. L.; Yang, S. S.; Yuan, K. K.; Wang, X. F.; Wang, Y. C. Theoretical study on the excited-state intramolecular hydrogen abstraction reactions of butanal. Chin. J. Struct. Chem. 2009, 28, 1226–1235.
Zhang, H. J.; Chen, S. L.; Zhong, J.; Zhang, S. W.; Zhang, Y. H.; Zhang, X. H.; Li, Z. S.; Zeng, X. C. Formation of aqueous-phase sulfate during the haze period in china: kinetics and atmospheric implications. Atmos. Environ. 2018, 177, 93–99.
doi: 10.1016/j.atmosenv.2018.01.017
Mack, D. J.; Njardarson, J. T. Recent advances in the metal-catalyzed ring expansions of three- and four-membered rings. ACS Catal. 2013, 3, 272–286.
doi: 10.1021/cs300771d
Abolfazl, S.; Ehsan, Z. DFT calculations and NBO analysis of 2-chloroethylethyldichlorosilane unimolecular elimination kinetics in the gas phase. Chin. J. Struct. Chem. 2012, 31, 625–634.
De Smedt, F.; Bui, X. V.; Nguyen, T. L.; Peeters, J.; Vereecken, L. Theoretical and experimental study of the product branching in the reaction of acetic acid with OH radicals. J. Phys. Chem. A 2005, 109, 2401–2409.
doi: 10.1021/jp044679v
Yang, Y.; Xu, H. X.; Cao, D. P.; Zeng, X. C.; Cheng, D. J. Hydrogen production via efficient formic acid decomposition: engineering the surface structure of Pd-based alloy catalysts by design. ACS Catal. 2019, 9, 781–790.
doi: 10.1021/acscatal.8b03485
Koroteev, V. O.; Bulushev, D. A.; Chuvilin, A. L.; Okotrub, A. V.; Bulusheva, L. G. Nanometer-sized MoS2 clusters on graphene flakes for catalytic formic acid decomposition. ACS Catal. 2014, 4, 3950–3956.
doi: 10.1021/cs500943b
Lu, G. Q.; Crown, A.; Wieckowski, A. Formic acid decomposition on polycrystalline platinum and palladized platinum electrodes. J. Phys. Chem. B 1999, 103, 9700–9711.
doi: 10.1021/jp992297x
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Xinghui Yao , Zhouyu Wang , Da-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Zhen Liu , Zhi-Yuan Ren , Chen Yang , Xiangyi Shao , Li Chen , Xin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939
Shiyu Pan , Bo Cao , Deling Yuan , Tifeng Jiao , Qingrui Zhang , Shoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185
Yi Herng Chan , Zhe Phak Chan , Serene Sow Mun Lock , Chung Loong Yiin , Shin Ying Foong , Mee Kee Wong , Muhammad Anwar Ishak , Ven Chian Quek , Shengbo Ge , Su Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329
Rui Wang , Yang Liang , Julius Rebek Jr. , Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Kebo Xie , Qian Zhang , Fei Ye , Jungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
Zizhuo Liang , Fuming Du , Ning Zhao , Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Chaozheng He , Jia Wang , Ling Fu , Wei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Dong-Sheng Deng , Su-Qin Tang , Yong-Tu Yuan , Ding-Xiong Xie , Zhi-Yuan Zhu , Yue-Mei Huang , Yun-Lin Liu . C-F insertion reaction sheds new light on the construction of fluorinated compounds. Chinese Chemical Letters, 2024, 35(8): 109417-. doi: 10.1016/j.cclet.2023.109417
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083