Citation: Wei LI, Gang PENG, Hua LAI, Geng HUANG, Chang-Hong LI. Hydrothermal Synthesis, Crystal Structure and Luminescence Property of a New Binuclear Cage-like Samarium(Ⅲ) Complex Sm2(C7H4ClCOO)6(C12H8N2)2(H2O)2[J]. Chinese Journal of Structural Chemistry, ;2020, 39(2): 350-355. doi: 10.14102/j.cnki.0254–5861.2011–2481 shu

Hydrothermal Synthesis, Crystal Structure and Luminescence Property of a New Binuclear Cage-like Samarium(Ⅲ) Complex Sm2(C7H4ClCOO)6(C12H8N2)2(H2O)2

  • Corresponding author: Wei LI, li_weihnxy@163.com Chang-Hong LI, lichanghong4444@126.com
  • Received Date: 31 May 2019
    Accepted Date: 3 July 2019

    Fund Project: the Natural Science Foundation of Hunan Province 2019JJ60021the Natural Science Foundation of Hunan Province 2019JJ50013the Scientific Research Found of Hunan Provincial Education Department of China 17A049the Scientific Research Found of Hunan Provincial Education Department of China 16C0224the Industry and Research Key Project of Hengyang City 2018kKJ016the Industry and Research Key Project of Hengyang City 2017KJ155the Industry and Research Key Project of Hengyang City 2017KJ193

Figures(5)

  • A new binuclear cage-like samarium(Ⅲ) complex Sm2(C7H4ClCOO)6(C12H8N2)2(H2O)2 (1) with samarium(Ⅲ) nitrate, m-chlorobenzoic acid and 1, 10-phenanthroline(phen) was synthe-sized. It crystallizes in the triclinic space group P\begin{document}$ \overline 1 $\end{document}, with a = 8.0217(2), b = 12.9037(4), c = 15.3764(5) Å, α = 85.373(3)º, β = 84.396(3)º, γ = 80.443(3)º, V = 1558.64(8) Å3, Dc = 1.636 g/cm3, Z = 2, F(000) = 806, the final GOOF = 1.051, R = 0.0754 and wR = 0.1388. The whole molecule consists of two samarium ions bridged by four m-chlorobenzoic acid anions. The Sm(Ⅲ) ion is coordinated by eight atoms to give a distorted square antiprism coordination geometry. The TG analysis and fluorescent properties of 1 were studied.
  • 加载中
    1. [1]

      Veauthler, J. M.; Schelter, E. J.; Carlson, C. N.; Scott, B. L.; Re, R. E.; Thopson, J. D.; Klpllnger, J. L.; Morrls, D. E.; John, K. D. Direct comparison of the magnetic and electronic properties of samarocene and ytterbocene terpyridine complexes. Inorg. Chem. 2008, 47, 5841–5849.  doi: 10.1021/ic8001465

    2. [2]

      Melo, L. L. L. S.; Castro, G. P.; Goncalves, S. M. C. Substantial intensification of the quantum yield of samarium(Ⅲ) complexes by mixing ligands: microwave-assisted synthesis and luminescence properties. Inorg. Chem. 2019, 58, 3265–3270.  doi: 10.1021/acs.inorgchem.8b03340

    3. [3]

      Zhang, H. Y.; Zhang, J. J.; Ren, N.; Xu, S. L.; Tian, L.; Bai, J. H. Synthesis, crystal structure and thermal decomposition mechanism of complex [Sm(p-BrBA)3bipy·H2O]2·H2O. J. Alloys Compd. 2008, 464, 277–281.  doi: 10.1016/j.jallcom.2007.09.091

    4. [4]

      Abu-Yamin, A. A.; Aldamen, M. A.; Sinnokrot, M. O.; Juwhari, H. K.; Salman, M.; Sarairah, I.; Ai-Hawarin, J.; Mubarak, M. S. Synthesis characterization, crystal structure, and fluorescence of a new samarium Schiff base complex. J. Struct. Chem. 2018, 59, 1935–1943.  doi: 10.1134/S0022476618080243

    5. [5]

      Wang, Y. J.; Wu, X. M.; Xiong, C. H. Sorption behavior and mechanism of samarium(Ⅲ) on amino ethylene phosphonic acid resin. Chin. J. React. Polym. 2001, 10, 173–178.

    6. [6]

      Knope, K. E.; Lill, D. T.; Rowland, C. E.; Cantos, P. M.; Bettencourt-Dias, A.; Cahill C. L. Uranyl sensitization of samarium(Ⅲ) luminescence in a two-dimensional coordination polymer. Inorg. Chem. 2012, 51, 201–206.  doi: 10.1021/ic201450e

    7. [7]

      Yan, X. W.; Wang, Y. Y.; Gao, M.; Ma, D. W.; Huang, Z. B. Magnetic and electronic properties of samarium-doped phenanthrene from first-principles study. J. Phys. Chem. C 2016, 120, 22565–22570.  doi: 10.1021/acs.jpcc.6b08373

    8. [8]

      (a) Zhao, P.; Zhu, Q. H.; Fettinger, J. C.; Power, P. Characterization of a monomeric, homoleptic, solvent free samarium bis(aryloxide). Inorg. Chem. 2018, 57, 14044–14046. (b) Liu, Y. Z.; Gao, H. Y.; Yi, X. G.; Li, D. P.; Li, Y. X. Crystal structures and DNA binding properties of 2-naphthoxyacetic acid Cu(Ⅱ) complexes. Chin. J. Struct. Chem. 2019, 38, 1362–16369.

    9. [9]

      Bae, S. E.; Jung, T. S.; Cho, Y. H.; Kin, J. Y.; Kwak, K.; Park, T. H. Electrochemical formation of divalent samarium cation and its characteristics in LiCl–KCl melt. Inorg. Chem. 2018, 57, 8299–8306.  doi: 10.1021/acs.inorgchem.8b00909

    10. [10]

      Yao, S.; Chan, H. S.; Lam, C. K.; Lee, H. K. Synthesis, structure, and reaction chemistry of samarium(Ⅱ), europium(Ⅱ), and ytterbium(Ⅱ) complexes of the unsymmetrical benzamidinate ligand [PhC(NSiMe3)(NC6H3Pr2i-2, 6)]. Inorg. Chem. 2009, 48, 9936–9946.  doi: 10.1021/ic901327m

    11. [11]

      Kefalidis, C. E.; Essafi, S.; Perrin, L.; Maron, L. Qualitative estimation of the single-electron transfer step energetics mediated by samarium(Ⅱ) complexes: a "SOMO-LUMO gap" approach. Inorg. Chem. 2014, 53, 3427–3433.  doi: 10.1021/ic402837n

    12. [12]

      Melo, L. L. L. S.; Gerson, P.; Castro, Jr. G. P.; Goncalves, S. M. C. Substantial intensification of the quantum yield of samarium(Ⅲ) complexes by mixing ligands: microwave assisted synthesis and luminescence properties. Inorg. Chem. 2019, 58, 3265–3270.  doi: 10.1021/acs.inorgchem.8b03340

    13. [13]

      Bhattacharjee, C. R.; Das, G.; Goswami, P.; Mondal, P.; Prasad, K.; Rao, D. S. S. Norel photoluminescent lanthaidomesogens forming bilayer smectic phase derived from blue light emitting liquid crystalline, one ring o-donor Schiff-base ligands. Polyhedron 2011, 30, 1040–1047.  doi: 10.1016/j.poly.2011.01.015

    14. [14]

      Wu, A. Q.; Zheng, F. K.; Liu, X.; Guo, G. C.; Cai, L. Z.; Dong, Z. C.; Takano, Y.; Huang, J. S. A novel bi-layered samarium complex with an unprecedented coordination mode of orotic acid [Sm2(HL)2(OX)(H2O)2]n·2.5nH2O (H3L = orotic acid, ox2- = oxalate2-): synthesis, crystal structure and physical properties. Inorg. Chem. Commun. 2006, 9, 347–350.  doi: 10.1016/j.inoche.2005.12.014

    15. [15]

      (a) Sheldrick, G. M. Program for Bruker Area Detector Absorption Correction. University of Gottingen: Gottingen, Germany 2015. (b) Sheldrick, G. M. SHELXS-97, Program for Crystal Structure Solution. University of Gottingen: Gottingen, Germany 2015.

    16. [16]

      Gangu, K. K.; Dadhich, A. S.; Mukkamala, S. B. Hydrothermal synthesis, crystal structure and luminescence property of a three dimensional Sm(Ⅲ) coordination polymer with 2, 5-pyridinedicarboxylic acid. J. Chem. Sci. 2015, 127, 2225–2230.  doi: 10.1007/s12039-015-0985-9

    17. [17]

      Tahatabaee, M.; Mohammadinasab, R.; Aghaie, M. A three dimensional samarium(Ⅲ) coordination polymer with benzen-1, 2, 4, 5-tetracaroxylic acid, synthesis characterization and thermal decomposition to Sm2O3 nanoparticles. Polyhedron 2016, 26, 127–133.

    18. [18]

      Ay, B.; Dubey, N.; Yildiz, E.; Kani, I. A novel three dimensional samarium(Ⅲ) coordination polymer with an unprecedented coordination mode of the 2, 5-pyridinedicaboxylic acid ligand: hydrothermal synthesis, crystal structure and luminescence property. Polyhedron 2015, 88, 176–181.  doi: 10.1016/j.poly.2014.12.035

    19. [19]

      (a) Zhang, Q. F.; Lei, M. Y.; Yuan, H.; Wang, J. Y.; Shi, Y. A water-stable 3D luminescent metal-organic framework based on heterometallic [Eu6Zn] clusters showing highly sensitive selective and reversible detection of ronidazole. Inorg. Chem. 2017, 56, 7610–7614. (b) Yerrasani, R.; Karunakar, M.; Dubey, R.; Singh, A. K.; Nandi, R.; Singh, R. K.; Rao, T. R. Synthesis characterization and photophysical studies of rare earth metal complexes with a mesogenic Schiff-base. J. Mole. Liquids 2016, 215, 510–515.

    20. [20]

      (a) Wei, Q; Zheng, Z.; Feng, H. X.; Hong, X. J.; Huang, X.; Peng, H. J.; Cai, Y. P. Two samariu(Ⅲ) complexes with tunable fluorescence from in situreactions of 2-ethoxy-6-((pyridin-2-ylmethylimino)methyl)phenol with Sm3+ ion. RSC Adv. 2016, 97, 94689–94691. (b) Li, D. P.; Liu, Q.; Lian, Q. Y.; Jiao, X. Y.; Li, Y. X. Synthesis, crystal structure and luminescent property of an Eu3+ complex. Chin. J. Struct. Chem. 2014, 33, 1539–1544.

    21. [21]

      (a) Zhang, H.; Li, H. F.; Chen, P.; Yan, P. F. Syntheses, structures and photoluminescence properties of a series of 3D Zn-Ln heterometallic complexes with 2, 3-prazine dicarboxylic acid as a bridging ligand. Inorg. Chem. 2018, 644, 346–352. (b) Yuan, S.; Zhang, Y. J.; Hou, J. Y.; Liu, Q. L.; Li, D. P.; Li, Y. X. Syntheses, crystal structures and luminescent properties of two schiff base complexes. Chin. J. Struct. Chem. 2016, 35, 965–972.

  • 加载中
    1. [1]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    2. [2]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    3. [3]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    4. [4]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    5. [5]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    6. [6]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    7. [7]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    8. [8]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    9. [9]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    10. [10]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    11. [11]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    12. [12]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    13. [13]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    14. [14]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    15. [15]

      Rongliang DengYihang ChenXiaotong FanGuolong ChenShuli WangChangzhi YuXiao YangTingzhu WuZhong ChenYue Lin . Break of thermal equilibrium between optical and acoustic phonon branches of CsPbI3 under continuous-wave light excitation and cryogenic temperature. Chinese Chemical Letters, 2024, 35(7): 109346-. doi: 10.1016/j.cclet.2023.109346

    16. [16]

      Hang ChenChengzhi CuiHebo YeHanxun ZouLei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145

    17. [17]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    18. [18]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    19. [19]

      Linfang WangJing LiuMinghao RenWei Guo . A highly sensitive fluorescent HClO probe for discrimination between cancerous and normal cells/tissues. Chinese Chemical Letters, 2024, 35(6): 108945-. doi: 10.1016/j.cclet.2023.108945

    20. [20]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

Metrics
  • PDF Downloads(1)
  • Abstract views(175)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return